Human genetics in the 21st century:

Using bioinformatics to link genotype and phenotype

High School Student Program 2015

Bioinformatics and Research Computing Whitehead Institute

http://barc.wi.mit.edu

Genetic engineering

- Before genetic engineering is really useful, we might want to know more about
 - Gene function and regulation
 - Associations between genetic markers and physical traits
- · Bioinformatics tries to address both topics

Jughead, May 1997

Selected discoveries since Mendel

- 1950s
 - DNA is the genetic material
 - The structure of DNA
- 1960s
 - The genetic code (DNA => protein)
- 1970s
 - DNA sequencing
- 1990s-2000s
 - Genome sequencing

10

Sampling genome sequence

- Most of the genome is identical between individuals
- Let's concentrate only on the places that are the most different

Linking genotype and phenotype using genomics

- To do this, we need only
 - Genome sequence (or a sample of it) for many individuals
 - Selected phenotype(s) for the same individuals
 - [Some complex statistics]

Single nucleotide polymorphisms

- SNPs (pronounced "snips") because
 - Single: were looking at just one genome position
 - Nucleotide: DNA letter differs
 - Polymorphism: variation occurring commonly in a population (in at least 1% of individuals)
- SNPs can be within a gene or between genes

But humans (like peas) are diploid

- We have 2 genomes, with 2 copies of each chromosome
- Each SNP can be
 - Homozygous (ex: CC), or
 - Heterozygous (ex: TG)

Combining phenotype with genotype

- Genotype: use all SNPs or a subset of tag SNPs
- Phenotype: whatever traits we want to study (as long as we think they at least partly genetic)

	Genotype block "A"			Genotype block "B"			
_					Щ		
	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	Height	Lactose
	AA	π	GG	CC	GG	tall	can digest
	AA	π	GG	cc	GG	short	can digest
	AA	π	GG	cc	GG	short	intolerant
	AA	π	GG	СТ	GC	tall	can digest
	AA	π	GG	ст	GC	tall	can digest
	AA	π	GG	СТ	GC	short	can digest
	AG	TC	GT	ст	GC	tall	intolerant
	AG	TC	GT	СТ	GC	short	intolerant
	AG	TC	GT	CT	GC	tall	intolerant
	AG	TC	GT	ст	GC	short	intolerant
	AG	TC	GT	ст	GC	tall	intolerant

Nearby SNPs are associated

- Nearby SNPs tend to stay together during meiosis
- As a result, they tend to be genetically linked
- One "tag SNP" can be used to represent a set of linked SNPs

Genome-wide association study (GWAS)

- Compare every marker (SNP, tag SNP, etc.) to every trait
- Is the trait associated (correlated) with any marker?

Exercise 1

• Perform a small-scale GWAS analysis

...

14

Resources for genotype-phenotype interactions

- Online Mendelian Inheritance in Man http://omim.org
- GWAS catalog http://www.genome.gov/gwastudies/
- PheGenI http://www.ncbi.nlm.nih.gov/gap/phegeni/
- ClinVar http://www.ncbi.nlm.nih.gov/clinvar/
- SNPedia http://www.snpedia.com

Taking ethnicity into account

- Genotypes have been collected from large-scale projects like
 - HapMap http://hapmap.ncbi.nlm.nih.gov
 - 1000 Genomes http://www.1000genomes.org
- These populations ("ethnic groups") include
 - Yoruba in Ibadan, Nigeria ("YRI")
 - Japanese in Tokyo, Japan ("JPT")
 - Han Chinese in Beijing, China ("CHB")
 - Utah residents with ancestry from northern and western Europe ("CEU")
- Sample HapMap data for SNP rs1834640

Interpreting associations

- An association means that the genotype of a marker (like a SNP) can help predict the presence of a trait, BUT
 - The SNP itself might have no effect it may just be linked to another DNA element that has the effect
 - The effect may be very small (but still > 0)
 - The association may be present only in certain individuals
 - The association may be one of many for this trait
 - it may only appear to be present (until other independent studies can verify it)
- What experiment(s) could you design to verify that a SNP causes some effect?

Exploring genotype-phenotype associations

- Detecting an association is only the first step.
- One typically also wants to associate a trait with the choices of genotypes at that SNP.
- SNPedia often reports these, such as for rs671

Exercise 2

 Link the genotype of your "alter ego" to potential traits

Summary

- One's genotype can reveal hints about one's
 - physical (and even mental) characteristics
 - medical and disease risks
- The genetic contribution to a phenotype can be linked to many genes (unlike Mendel's pea traits)
- Most genotype-phenotype associations require a lot more research to be useful
- In the future, (how) will doctors (and us) use this information?

21

