Topics for today

Introduction to R Graphics:

Using R to create figures

BaRC Hot Topics – October 2011

George Bell, Ph.D. http://iona.wi.mit.edu/bio/education/R2011/

• Getting started with R

- Drawing common types of plots (scatter, box, MA)
- Comparing distributions (histograms, CDF plots)
- Customizing plots (colors, points, lines, margins)
- Combining plots on a page
- Combining plots on top of each other
- More specialized figures and details

Why use R for graphics?

- Creating custom publication-quality figures
- Many figures take only a few commands
- Almost complete control over every aspect of the figure
- To automate figure-making (and make them more reproducible)
- Real statisticians use it
- It's free

Why not use R for graphics?

- Another application already works fine
- It's hard to use at first
 - You have to know what commands to use
- Getting the exact figure you want can take a series of commands
- Final product is editable only in Illustrator
- Real statisticians use it

Getting started

- See previous session: Introduction to R: http://iona.wi.mit.edu/bio/education/R2011/
- Hot Topics slides: http://iona.wi.mit.edu/bio/hot_topics/
- R can be run on your computer or on tak.

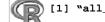
On tak	On your own computer
opyright (C) 2010 The R Foundation for SBN 3-900051-07-0	Contract the factor terms Contract Contract terms Contres Contract terms Contract terms Contract t

Start of an R session

- Use the Help menu
- Check out "Manuals"
 - http://www.r-project.org/
 - contributed documentation
- Use R's help ?boxplot [show info] ??boxplot [search docs] example(boxplot)[examp
- Search the web – "r-project boxplot"

Reading files - intro

• Take R to your preferred directory ()



- Check where you are (e.g., get your working directory) and see what files are there
 - > getwd()
 - [1] "X:/bell/Hot_Topics/Intro_to_R"

[1] "all_my_data.txt"

Reading data files

- · Usually it's easiest to read data from a file
 - Organize in Excel with one-word column names
 - Save as tab-delimited text
- Check that file is there list.files()

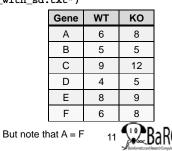
R	368	· · · · · · · · · · · · · · · · · · ·	6 444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
2	1		G dan is station at	and a fail horizont	
r	- 0	• 10	Operate * New Yorks		
12			à NuTreu	1 100	
	wt	ko	Differential segmentant in form hit excitorent.	2 maps	
	5		ii bea a S	Diam.	
Đ.	6	9	2 Notes dealers inset		
÷.	7	10	2 Michaeler, 202		
5	- <u>(</u>	20	Property and a		
Ŕ.			TRUE STOLEN		
2.		4.000	MARKING DECEMBER	w	
4			Arrist Lange Mr.	THE REPORT	

- tumors = read.delim("tumors_wt_ko.txt", header=T)
- Check that it's OK

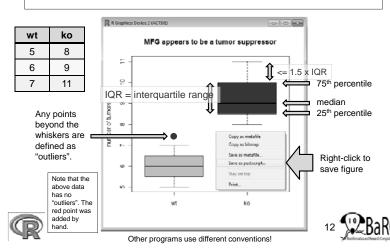
Read file

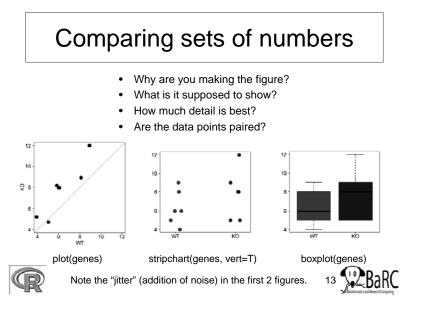
Figure formats and sizes

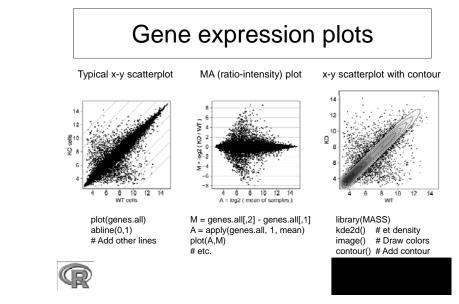
- By default, a figure window will pop up from most R sessions.
 - Instead, helpful figure names can be included in code
 - Pro: You won't need an extra step to save the figure
 - Con: You won't see what you're creating
- To create another format (with size in pixels) png("tumor_boxplot.png", w=1800, h=1200) boxplot(tumors) dev.off()
- Save your commands (in a text file)!
- Final PDF figures
 - can be converted with Acrobat
 - are be edited with Illustrator



Introduction to scatterplots

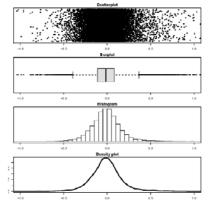

- · Simplest use of the 'plot' command
- · Can draw any number of points
- Example (comparison of expression values) genes = read.delim("Gene_exp_with_sd.txt")

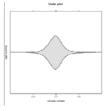

plot(genes\$WT, genes\$KO)


		4	5	6	7 58WT	٥	9
	° 1	9	+				_
	•						
	ħ.,						
×*6	*			0			
0.686	۰ -					۰	
	۶-						
	τ.						
	2 -						

Boxplot conventions

Comparing distributions


- Why are you making the figure?
- What is it supposed to show?
- How much detail is best?
- Methods:
 - Boxplot
 - Histogram
 - Density plot
 - Violin plot
 - CDF (cumulative distribution function) plot



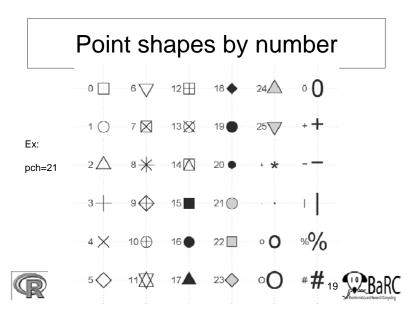
Displaying distributions

• Example dataset: log2 expression ratios



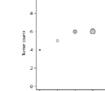
Comparing similar distributions

- Example dataset:
 - MicroRNA is knocked down
 - Expression levels are assayed
 - Genes are divided into those without miRNA target site (black) vs. with target site (red)



Customizing plots

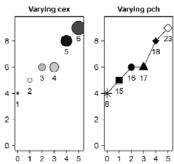
- About anything about a plot can be modified, although it can be tricky to figure out how to do SO.
 - Colors ex: col="red"
 - Shapes of points ex: pch=18
 - Shapes of lines ex: lwd=3, lty=3
 - Axes (labels, scale, orientation, size)
 - Margins see 'mai' in par()
 - Additional text ex: text(2, 3, "This text")
 - See par() for a lot more options



Customizing a plot

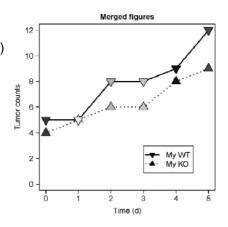
- plot(x, y, type="p")
- plot(x, y, type="p", pch=21, col="black", bg=rainbow(6), cex=x+1, ylim=c(0, max(c(y1,y2))), xlab="Time (d)", ylab="Tumor counts", las=1, cex.axis=1.5, cex.lab=1.5, main="Customized figure", cex.main=1.5)
- Non-obvious options:
 - type="p"

cex=x+1


- # Draw points # Draw a 2-color circle
- pch=21 col="black"
- # Inside color of points bg=rainbow(6)
 - # Size points using 'x'
- las=1
- # Outside color of points
- # Print horizontal axis labels

Time (d)

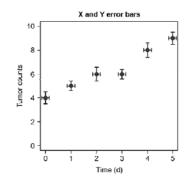
Combining plots on a page


- Set up layout with command like
 - par(mfrow = c(num.rows, num.columns))
 - Ex: par(mfrow = c(1,2))

Merging plots on same figure

- Commands:
 - plot # start figure
 - points # add point(s)
 - lines # add line(s)
 - legend
- Note that order of commands determines order of layers

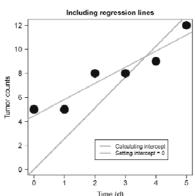
- Creating error bars
- Drawing a best-fit (regression) line
- Using transparent colors
- Creating colored segments
- Creating log-transformed axes
- Labeling selected points

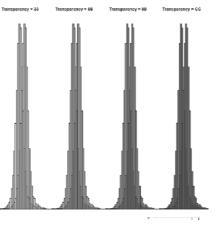


Using error bars

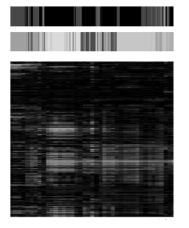
library(plotrix)

plotCl(x, y, uiw=y.sd, liw=y.sd)
plotCl(x, y, uiw=x.sd, liw=x.sd, err="x", add=T)

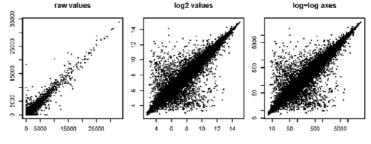

vertical error bars# horizontal


Drawing a regression line

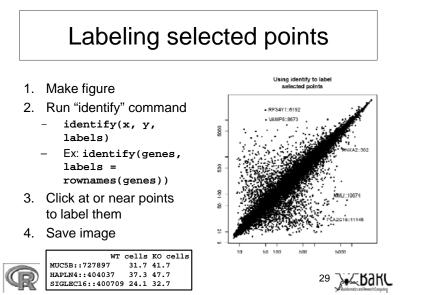
- Use 'Im(response~terms)' for simple linear regression:
 - # Calculate y-intercept Imfit = $Im(y \sim x)$ # Set y-intercept to 0 Imfit.0 = $Im(y \sim x + 0)$
- Add line(s) with abline(Imfit)


Transparent colors

- Semitransparent colors can be indicated by an extended RGB code (#RRGGBBAA)
 - AA = opacity from 0-9,A-F (lowest to highest)
 - Sample colors:
 Red #FF000066
 - Green #00FF0066 Blue #0000FF66


Colored bars

- Colored bars can be used to label rows or columns of a matrix
 - Ex: cell types, GO terms
- Limit each color code to 6-8 colors
- Don't forget the legend!


Handling log tranformations

- Data or axes can be transformed or scaled.
- Which (if either) should be used?

More resources

- R Graph Gallery:
 - http://addictedtor.free.fr/graphiques/
- R scripts for Bioinformatics

 http://iona.wi.mit.edu/bio/bioinfo/Rscripts/
- List of R modules installed on tak

 http://tak/trac/wiki/R
- Our favorite book:
 - Introductory Statistics with R (Peter Dalgard)
- We're glad to share commands and/or scripts to get you started

Upcoming Hot Topics

- Introduction to Bioconductor microarray and RNA-Seq analysis (Thursday)
- Unix, Perl, and Perl modules (short course)
- Quality control for high-throughput data
- RNA-Seq analysis
- Gene list enrichment analysis
- Galaxy
- Sequence alignment: pairwise and multiple
- See http://iona.wi.mit.edu/bio/hot_topics/
- Other ideas? Let us know.

