Analysis of Microarray Data

Lecture 3: Visualization and Functional Analysis

George Bell, Ph.D.
Bioinformatics Scientist
Bioinformatics and Research Computing
Whitehead Institute

Outline

• Review
• Visualizing all the data
• What to do with a set of interesting genes?
 – Basic annotation
 – Comparing lists
 – Genome mapping
 – Obtaining and analyzing promoters
 – Gene Ontology and pathway analysis
 – Other expression data

Generic Microarray Pipeline

• Design experiment
• Prepare samples and perform hybridizations
• Quantify scanned slide image
• Calculate expression values
• Normalize
• Handle low-level expression values
• Merge data for replicates
• Determine differentially expressed genes
• Cluster interesting data

Review

• Preliminary filtering?
• Measuring differential expression:
 • Correcting for multiple hypothesis testing
 – Fold change, t-test, ANOVA
 – Bonferroni, False Discovery Rate, etc.
• Filtering; identifying “interesting” genes
• Distance measures for clustering
• Clustering/segmentation types and methods
• What is the best analysis pipeline?
 – Why are you doing the experiment?
 – Are you being reasonable with the statistics?

Why graphs?

• Get a global perspective of the experiments
• Quality control: check for low-quality data and errors
• Compare raw and normalized data
• Compare controls: are they homogeneous?
• Help decide how to filter data
• Look at a subset of data in detail

Intensity histogram

Histogram of total brain expression (raw Affymetrix data)

Median = 6.6

Median = 100
Intensity histogram

- Most genes have low expression levels
- Using log₂ scale to transform data
 - more normal distribution
 - more helpful interpretation
- One way to observe overall intensity of chip
- How to choose genes with “no” expression?

Intensity scatterplot

- Compares intensity on two colors or chips
- Genes with similar expression are on the diagonal
- Use log-transformed expression values
- Genes with lower expression
 - noisier expression
 - harder to call significant

R-I and M-A plots

- Compares intensity on two colors or chips
- Like an intensity scatterplot rotated 45°
 \[
 R (\text{ratio}) = \log(\text{chip1} / \text{chip2})
 \]
 \[
 I (\text{intensity}) = \log(\text{chip1} \times \text{chip2})
 \]
 \[
 M = \log_2(\text{chip1} / \text{chip2})
 \]
 \[
 A = \frac{1}{2}(\log_2(\text{chip1} \times \text{chip2}))
 \]
- Popularized with lowess normalization
- Easier to interpret than an intensity scatterplot

Volcano plot
Volcano plot

- Scatterplot showing differential expression statistics and fold change
- Visualize effects of filtering genes by both measures
- Using fold change vs. statistical measures for differential expression produce very different results

Boxplots

- Display summary statistics about the distribution of each chip:
 - Median
 - Quartiles (25% and 75% percentiles)
 - Extreme values (>3 quartiles from median)
 - Note that mean-normalized chips wouldn’t have the same median
 - Easy in R; much harder to do in Excel

Chip images

- Affymetrix U95A chip hybridized with fetal brain
- Image generated from .cel file
- Helpful for quality control

Heatmaps

- Using distance measurements
 - Genes with most similar profiles to GPR37
Functional Analysis: intro

- After data is normalized, compared, filtered, clustered, and differentially expressed genes are found, what happens next?
- Driven by experimental questions
- Specificity of hypothesis testing increases power of statistical tests
- One general question: what’s special about the differentially expressed genes?

Annotation using sequence databases

- Gene data can be “translated” into IDs from a wide variety of sequence databases:
 - LocusLink, Ensembl, UniGene, RefSeq, genome databases
 - Each database in turn links to a lot of different types of data
 - Use Excel or programming tools to do this quickly
- Web links, instead of actual data, can also be used.
- What’s the difference between these databases?
- How can all this data be integrated?

Venn diagrams

- Show intersection(s) between at least 2 sets

Mapping genes to the genome

- Genomic locations of differentially expressed genes

Promoter extraction

- Prerequisite of any promoter analysis
- Requires a sequenced genome and a complete, mapped cDNA sequence
- “Promoter” is defined in this context as upstream regulatory sequence
- Extract genomic DNA using a genome browser: UCSC, Ensembl, NCBI, GBrowse, etc.
- Functional promoter needs to be determined experimentally

Promoter analysis

- TRANSFAC contains curated binding data
- Transcription factor binding sites can be predicted
 - matrix (probabilities of each nt at each site)
 - pattern (fuzzy consensus of binding site)
- Functional sites tend to be evolutionarily conserved
- Functional promoter activity needs to be verified experimentally
Gene Ontology

- GO is a systematic way to describe protein (gene) function
- GO comprises ontologies and annotations
- The ontologies:
 - Molecular function
 - Biological process
 - Cellular component
- Ontologies are like hierarchies except that a "child" can have more than one "parent".
- Annotation sources: publications (TAS), bioinformatics (IEA), genetics (IGI), assays (IDA), phenotypes (IMP), etc.

Gene Ontology analysis

- Unbiased method to ask question, “What’s so special about my set of genes?”
- Obtain GO annotation (most specific term(s)) for genes in your set
- Climb an ontology to get all “parents” (more general, “induced” terms)
- Look at occurrence of each term in your set compared to terms in population (all genes or all genes on your chip)
- Are some terms over-represented?
 Ex: sample:10/100 pop1: 600/6000 pop2: 15/6000

Pathway analysis

- Unbiased method to ask question, “Is my set of genes especially involved in specific pathways?”
- First step: Link genes to pathways
- Are some pathways over-represented?
- Caveats
 - What is meant by “pathway”?
 - Multiple DBs with varied annotations
 - Annotations are very incomplete

Comparisons with other expression studies

- Array repositories: GEO (NCBI), ArrayExpress (EBI), WADE (WIBR)
- Search for genes, chips, types of experiments, species
- View or download data
- Normalize but still expect noise
 - Check medians and distribution of data
- It’s much easier to make comparisons within an experiment than between experiments

Summary

- Plots: histogram, scatter, R-I, volcano, box
- Other visualizations: whole chip, heatmaps, bar graphs, Venn diagrams
- Annotation to sequence DBs
- Genome mapping
- Promoter extraction and analysis
- GO and pathway analysis
- Comparison with published studies

More information

- Course page:
 - http://iona.wi.mit.edu/bio/education/arrays/
- Bioconductor short courses: http://www.bioconductor.org/
- BaRC analysis tools:
- Gene Ontology Consortium website:
 - http://www.geneontology.org/
- Whitehead BaRC Group
Exercises

• Graphing all data
 – Scatterplot
 – R-I (M-A) plot
 – Volcano plot

• Functional analysis
 – Annotation
 – Comparisons
 – Genome mapping
 – Promoter extraction and analysis
 – GO and pathway analysis
 – Using other expression studies