Bioinformatics for Biologists

Microarray Data Analysis. Lecture 1.

Fran Lewitter, Ph.D.
Director
Bioinformatics and Research Computing
Whitehead Institute

Outline

• Introduction
• Working with microarray data
 – Normalization
 – Analysis
 • Distance metrics
 • Clustering methods

Research Trends

- How are genes regulated?
- How do genes interact?
- What are the functional roles of different genes?
- How does expression level of a gene differ in different tissues?

Transcriptional Profiling

(Adapted from Quackenbush 2001)

- Study of patterns of gene expression across many experiments that survey a wide array of cellular responses, phenotypes and conditions
- Simple analysis - what’s up/down regulated?
- More interesting - identify patterns of expression for insight into function, etc.

Microarray Data

Collect data on n DNA samples (e.g. rows, genes, promoters, exons, etc.) for p mRNA samples of tissues or experimental conditions (e.g. columns, time course, pathogen exposure, mating type, etc)

Matrix (n x p) =

Multivariate Analysis

Concerned with datasets with more than one response variable for each observational or experimental unit (e.g. matrix X with n rows (genes) and p columns (tissue types))

- Hierarchical (phylogenetic trees) vs non-hierarchical (k-means)
- Divisive vs agglomerative
- Supervised vs unsupervised
 – Divide cases into groups vs discover structure of data
Multivariate Methods

- Cluster analysis - discover groupings among cases of X
 - Hierarchical produces dendograms
 - K-means - choose a prespecified number of clusters
 - Self Organizing Maps
- Principal component analysis (PCA)
 - Linear method, unsupervised, seeks linear combinations of the columns of X with maximal (or minimal) variance (graphical)

DNA Microarrays

```
Build the chip  Prepare RNA
Hybridize array ↓
Collect results
Normalize
Analyze
```

Data Normalization

- Correct for systematic bias in data
 - Avoid it, recognize it, correct it, discard outliers
- First step for comparing data from one array to another

Sources of variation

```
wanted vs unwanted

Across experimental conditions
Chip, slide
Hybridization conditions
Imaging
```

Normalization Approaches

- Compensate for experimental variability
- Housekeeping genes
- Spiked in controls
- Global median normalization
- Total intensity normalization
- LOWESS correction

Expression Ratios

- Let R = a query sample
- Let G = a reference sample
- Then the ratio, $T_i = R_i / G_i$
- Need to transform these to \log_2
- Examples: $T = 2/1 = 2$; $T = 1/2 = 0.5$
- Examples: $\log_2(2) = 1$; $\log_2(0.5) = -1$
Total Intensity Normalization
(Adapted from Quackenbush 2002)

Assumptions:
1. Start with equal amounts of RNA for the two samples;
2. Arrayed elements represent a random sample of genes in the organism.

Rescale intensities:

\[
N_{total} = \frac{\sum_i R_i}{\sum_i G_i}
\]

\[
T_i' = \frac{R_i'}{G_i'} = \frac{1}{N_{total}} \frac{R_i}{G_i}
\]

\[
G_i = N_{total} G_i' \text{ and } R_i = R_i' \frac{\log(T_i)}{\log(T_i) - \log(N_{total})}
\]

LOWESS - The R-I Plot
(Adapted from Quackenbush 2002)

- Data exhibit an intensity-dependent structure.
- Uncertainty in intensity and ratio measurements is greater at lower intensities.

LOWESS Normalization
(Adapted from Quackenbush 2002)

If we set \(x_i = \log_2(R^*G) \) and \(y_i = \log_2(R/G) \), we use first estimates of \(x(i) \), the dependence of the \(\log_2(\text{ratio}) \) on the \(\log_2(\text{intensity}) \), and then use this function, point by point, to correct the measured \(\log_2(\text{ratio}) \) values so that

\[
\log(y_i) = \log(y(x(i))) + \log(\frac{y(x(i))}{y_i})
\]

or equivalently,

\[
\log(y_i) = \log(\frac{y(x(i))}{y_i}) - \log(\frac{y(x(i))}{y_i})
\]

As with the other normalization methods, we can make this equation equivalent to a transformation on the intensities, where

\[
G_i = G_i^* 2^{x(i)} \text{ and } R_i = R_i^* 2^{x(i)}
\]

After normalization
(Adapted from Quackenbush 2001)

- Data reported as an “expression ratio” or as a logarithm of the expression ratio.
- Expression ratio is the normalized value of the expression level for a particular gene in the query sample divided by its normalized value for the control.
- Use log of expression ratio for easier comparisons.

Citations

Lists of Tools

- Local WI Page
 - WADE
- R Statistics Package Microarray Tools
 - http://www.stat.uni-muenchen.de/~strimmer/express.html
- Bioconductor Project
 - http://www.bioconductor.org/
- EBI
 - http://ep.ebi.ac.uk/Links.html
 - http://ep.ebi.ac.uk/EP/

Exercise 1

Excel Conventions

- A2: cell reference
- A2:A100: series of cells
- =B5: formula
- =B5: absolute link
- =data!B4: reference other sheet
- =[otherFile.xls]data!B4: reference other file

Exercise 1

Functions

- MEDIAN
- SUM
- AVERAGE
- IF
- TTEST
- VLOOKUP

Exercise 1

To Do

Affy - fetal & human adult liver & brain tissue
- Normalize data - 8 chips (replicates)
 - Global median normalization
 - (expression signal/chip median value)*100
- Filter low intensity signals
 - Based on A/P
 - Eliminate signal similar to background
- Calculate ratios
 - Reduce data (replicates)
 - Use AVERAGE function
 - Ratio of fetal tissue/adult tissue
 - Log2