Analysis of Microarray Data
Lecture 2:
Differential Expression, Filtering and Clustering

George Bell, Ph.D.
Senior Bioinformatics Scientist
Bioinformatics and Research Computing
Whitehead Institute

Outline

• Review
• Measuring differential expression
• Multiple hypothesis testing
• Gene filtering
• Measuring distance between profiles
• Clustering methods

Review
• Assumption: Expression microarrays measure specific mRNA levels
• Why perform the experiment?
• What best design addresses your goals?
• Normalize to increase power of comparisons.
• Precision doesn’t necessarily indicate analysis success.
• Does your analysis pipeline make sense biologically and statistically?

Caveats and limitations
• Are the probes on the chip for a specific transcript? gene?
• Are mRNA levels correlated with transcription activity?
• Is transcriptional regulation important?
• Are mRNA levels correlated with protein activity?
• Is this the best technology to answer your question(s)?

Measuring differential expression
• One common goal is to rank all the genes on a chip in order of evidence for differential expression
• Ways to score genes:
 – Fold change
 – T-statistic p-value
 – Another statistic (nonparametric, etc.)
 – A combination of several scores

Fold change
• Advantage: Fold change makes sense to biologists
 \[
 \text{Fold change} = \frac{\text{expression value in sample 1}}{\text{expression value in sample 2}}
 \]
• What cutoff should be used?
• Should it be the same for all genes?
• Disadvantages:
 – Only mean values – not variability – are considered
 – Genes with large variances are more likely to make the cutoff just because of noise
Hypothesis testing

• We want to test …
 – Is the expression of my gene different in a set in one condition compared to another condition?
 – How big is the difference?
 – Is the mean of one set of values different from the mean of another set of values?
 – If we say “yes”, how much confidence do we have that the means are truly different?

• Assumptions:
 – Data are normally distributed
 – Samples are randomly chosen

Hypothesis testing with the t-test

• Considers mean values and variability
• Equation for the t-statistic in the Welch test:
 \[t = \frac{\bar{x}_g - \bar{x}_r}{\sqrt{\frac{s_g^2}{n_g} + \frac{s_r^2}{n_r}}} \]
 … and then a p-value is calculated
• Disadvantages:
 – Genes with small variances are more likely to make the cutoff
 – Works best with larger data sets than one usually has

Flavors of the t-test

• Are we only considering up-regulated or down-regulated genes, or both?
 – If both, perform a 2-tailed test
• Can we assume that the variance of the gene is similar in both samples?
 – Yes => Homoscedastic (the standard t-test)
 – No => Heteroscedastic (Welch’s test)

ANOVA

• Analysis of variance – like a multidimensional t-test
• Measure effect of multiple treatments and their interactions
• A thoughtful ANOVA design can help answer several questions with one analysis
• ANOVA can also analyze factors that should be controlled – just to confirm absence of confounding effects
• ANOVA generally identifies genes that are influenced by some factor – but then post-hoc tests must be run to identify the specific nature of the influence
 – Ex: t-tests between all pairs of data

Combining p-values and fold changes

• What’s important biologically?
 – How significant is the difference?
 – How large is the difference?
• Both amounts can be used to identify genes.
• What cutoffs to use?
• How many genes should be selected?
• Where are your positive controls?

Volcano plots
Differential expression - summary

- Multiple methods can produce lists of differentially expressed genes
- Which ways make most sense biologically and statistically?
- Be aware of multiple hypothesis testing
- Looking at all the data: volcano plots
- Where do your positive controls fit in?
- There may be no single best way

Multiple hypothesis testing

- We need both sensitivity and specificity:
 - Sensitivity: probability of successfully identifying a real effect
 - Specificity: probability of successfully rejecting a nonexistent effect
- The problem
 - The number of false positives greatly increases as one performs more and more t-tests
 - How seriously do you want to limit false positives?

Correcting for multiple hypothesis testing

- If false positives are not tolerated
 - Perform Bonferroni correction
 - If you perform 100 t-tests, multiply each p-value by 100 to get corrected (adjusted) values
 - $p > 0.0005 \Rightarrow p = 0.05$
- If false positives can be tolerated
 - Use False Discovery Rate (FDR)
 - If you can tolerate 15% false positives, set FDR to 0.15 and calculate what p-value to use
 - FDR method is less conservative than Bonferroni and usually more appropriate for microarrays.

Gene filtering

- An infinite number of methods can select “interesting” genes
- Not all genes on the chip need consideration: any meaningful selection is possible
- Filtering by function: using GO or other annotations
- Often the major question: How many genes to choose for further analysis?

Measuring distance between profiles

- Distance metric is most important choice when comparing genes and/or experiments
- What are you trying to do?

Common distance metrics

- Pearson correlation
 - Measures the difference in the shape of two curves
 - Modification: absolute correlation
- Euclidean distance: multidimensional Pythagorean Theorem
 - Measures the distance between two curves
- Nonparametric or Rank Correlation
 - Similar to the Pearson correlation but data values are replaced with their ranks
 - Ex: Spearman Rank, Kendall’s Tau
 - More robust (against outliers) than other methods
Clustering and segmenting

- Goal: organize a set of data to show relationships between data elements
- With microarray analysis: genes and/or chips
- Most data does not inherently exist in clusters
- Clustering vs segmenting
- Most effective with optimal quantity of data
- Interpretation of data in obvious clusters: is it filtered?

Clustering basics

- How to start:
 - One big cluster (divisive)
 - n clusters for n objects (agglomerative)
 - K clusters, where k is some pre-defined number
- Hierarchical agglomerative clustering
 - Popular method producing a tree showing relationships between objects (genes or chips)
 - Start by creating an all vs. all distance matrix
 - Fuse closest objects, then…

Representing groups of objects during clustering

How is distance measured to a cluster of objects?

- Single linkage (a) – minimum distance
- Complete linkage (b) – maximum distance
- Average linkage (c) – average distance
- Centroid linkage (d) – distance to “centroid” of group

Hierarchical clustering produces a dendrogram showing relationships between objects

- Are the data really hierarchical?
- Order of leaves $2^N - 2$
- How can objects be partitioned into groups?
 - k-means clustering
 - self-organizing maps
 - How many clusters (k)?
- Original distance matrix may be more informative

Summary

- Determining differential expression:
 - t-test, fold change, etc.
 - methods may be used in combination
- Correcting for multiple hypothesis testing
 - Bonferroni, False Discovery Rate, etc.
- Distance metrics: select carefully
- Clustering/segmentation types and methods
 - hierarchical, k-means, etc.; linkage types
 - Which protocol is best for your experiment?

References

Microarray tools

- Course page:
- BaRC analysis tools:
 - http://jura.wi.mit.edu/bioc/tools/
- Bioconductor (R statistics package)
 - http://www.bioconductor.org/
- Excel
- Many commercial and open source packages
- Cluster 3.0 and Java TreeView

Selecting a large matrix in Excel

1. Select the bottom right cell of the desired matrix
2. Control - Shift - Up arrow Select everything above the original cell
3. Control - Shift - Left arrow Select everything to the left of the original cell
4. Shift - Down arrow Move down one row
5. Shift - Right arrow Move to the right one column

Exercise 2: Excel functions

- LOG
- IF
- TTEST
- CONCATENATE
- VLOOKUP

Exercise 2 - To do

- Use t-test to identify differentially expressed genes
- Use the "Absent/Present" calls from the Affymetrix algorithm to flag genes with questionable expression levels
- List all the gene IDs for those that meet your significance threshold (such as p < 0.05) and are present in at least one sample.
- Gather expression data for these genes
- Cluster this selected data (multiple methods)
- Visualize clustered data as a heatmap