

Sequence Analysis

Η٠

Sequence Patterns and Matrices

George Bell, Ph.D.
WIBR Bioinformatics and Research Computing

Sequence Patterns and Matrices

- Multiple sequence alignments
- Sequence patterns
- Sequence matrices
- Identifying regulatory sites
- Finding overrepresented patterns and profiles
- Gene finding

Sequence Analysis Course © Whitehead Institute, 2005

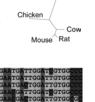
Why use DNA patterns and matrices?

- To help search the genome for ...
 - Transcription start sites
 - Splice junctions (exon-intron boundaries)
 - Transcription factor binding sites
 - microRNA targets
 - Active sites for chromatin regulators
 - Gene regions encoding protein motifs
 - RNA folding patterns (hairpins, etc.)

Sequence Analysis Course © Whitehead Institute, 2005

Multiple sequence alignments (MSAs)

- Global MSA is computationally difficult
- As a result, MSA algorithms use approximate methods
- Independent of the chosen algorithm, choice of scoring matrix is important
- · Aligning contigs vs. genes
- Aligning similar vs. divergent sequences


Sequence Analysis Course © Whitehead Institute, 2005

4

Global progressive MSA

- An MSA method that uses phylogenetic information to determine alignment order
- 1. Perform all pairwise alignments
- 2. Use alignment scores to create a tree
- 3. Align most similar pair of sequences and create consensus.
- Align next most similar pair of sequences and create consensus . repeat until done

 R

Zebrafish

Sequence Analysis Course © Whitehead Institute, 2005

Sequence patterns

Pattern: an expression describing all possible combinations of bases in a sequence

- · Generally derived from a MSA
- Ex1. EcoRI enzyme site: GAATTC
- Ex2. Codons for proline: CC[ACTG]; CCN
- Ex3. TATA box: TATA[AT][AGT][GA]
- Ex4. TFBS for GATA4:
- AGATA[AGT][AC]AGGGA
- Ex 5. Gene region encoding your favorite protein motif => better to use protein pattern!

Sequence Analysis Course © Whitehead Institute, 2005

More complex patterns

- May want to consider:
 - Mismatches
 - Insertions
 - Deletions
 - Alphabet reflecting ambiguity
- Ex: Patscan (Argonne National Laboratory) syntax
 - Pattern[Mismatches, Deletions, Insertions]
 - Ex: RRRRRYYYYY[3,2,1] (R = purine; Y = pyrimidine)

Sequence Analysis Course © Whitehead Institute, 2005

Pattern considerations

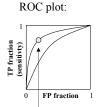
- Is there reliable data behind it?
- Is it specific and sensitive?
- How many matches would you expect by chance?
- Patterns don't represent the different probabilities of each combination of bases, just whether they can occur or not.
- DNA or protein?

Sequence Analysis Course © Whitehead Institute, 2005

Pattern searching programs

- · Check examples or help for syntax
- · EMBOSS:
 - fuzznuc: nucleic acid pattern search
 - fuzzpro: protein pattern search
 - dreg: regular expression search of a nucleotide sequence
- PatScan
- Perl (programming language) regular expressions

Sequence Analysis Course © Whitehead Institute, 2005


Sensitivity and Specificity

Proportion of true sites correctly identified:

sensitivity =
$$\frac{TP}{TP + FN}$$

Proportion of false sites correctly identified:

specificity =
$$\frac{TN}{TN + FP}$$

Aim for "optimal" sensitivity

Sequence Analysis Course © Whitehead Institute, 2005

Matrix Representations

Matrix: a probabilistic representation of bases in a sequence

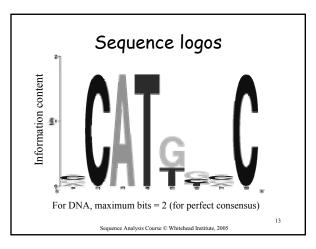
- · Generally derived from a MSA
- Related to concept of "profile" (but no gaps allowed in MSA)
- · Maintains meaning when transposed
- Position-specific scoring matrix (PSSM) assumes each position is independent
- · Handling "zero" probabilities with pseudocounts

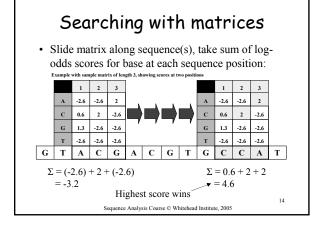
Sequence Analysis Course © Whitehead Institute, 2005

Creating a matrix (PSSM)

1. Create alignment 2. Count frequencies; add pseudocounts

	_
Α	GCATTTGC
В	ACATGGAC
C	CCATGCCC
D	ACATGGAC
Е	CCATTTCC
F	GCATGGGC
G	CCATGCCC
Н	GCATTGGC


	1	2	3	4	5	6	7	8	
Α	2	Ψ	8	Ψ	Ψ	ψ	2	ψ	$\Psi \approx \frac{\sqrt{n_{\text{seq}}}}{n_{\Psi}}$
С	3	8	Ψ	Ψ	Ψ	2	3	8	<u>-√8</u>
G	5	Ψ	Ψ	Ψ	5	4	3	ψ	17 = 0.167
Т	Ψ	Ψ	Ψ	8	3	2	Ψ	ψ	- 0.107


3. Calculate log-odds scores: log₂ (freq_{obs}/freq_{exp})

	1	2	3	4	5	6	7	8
A	-2.6	-2.6	2	-2.6	-2.6	-2.6	-2.6	-2.6
C	0.6	2	-2.6	-2.6	-2.6	-2.6	0.6	2
G	1.3	-2.6	-2.6	-2.6	1.3	1	0.6	-2.6
T	-2.6	-2.6	-2.6	2	0.6	-2.6	-2.6	-2.6

Sequence Analysis Course © Whitehead Institute, 2005

12

Hints for identifying regulatory sites

- Mask repetitive sequence first (RepeatMasker) to remove "non-functional noise"
- What specific area(s) of the sequence or genome can you search (instead of all of it)?
- Look at conservation: functional regulatory sites tend to be conserved
- ENCODE project (1% of human genome)

Sequence Analysis Course © Whitehead Institute, 2005

Identifying over-represented patterns

- 1. Count oligos of each sequence of expected length.
- 2. Calculate expected frequencies.
- 3. Rank observed/expected values.
- 4. Repeat for oligos of another length.

This method assumes the pattern is very specific

Sequence Analysis Course © Whitehead Institute, 2005

1

Identifying over-represented matrices

- Inputs
 - a set of sequences assumed to contain a matrix
 - range of presumed profile width?
 - ≥ 0 ("zoops") or ≥ 1 ("oops") occurrence per sequence?
- · Programs
 - Meme: based on the expectation maximum (EM) algorithm; meme.sdsc.edu
 - AlignACE: based on the Gibbs sampling algorithm; atlas.med.harvard.edu

Sequence Analysis Course © Whitehead Institute, 2005

17

Identifying features of genes in genomic DNA

- Splice sites
- · Open reading frames
- Promoters
- · Codon bias
- Expression information (ESTs, mRNA)
- Protein similarity to known genes
- Conservation across species

Sequence Analysis Course © Whitehead Institute, 2005

Gene finding programs (sample)

- GeneWise (Birney and Durbin, 2000)
- Genscan (Burge and Karlin, 1997)
- Acembly (Thierry-Mieg et al.)
- Twinscan (Korf et al., 2001)
- SGP (Parra et al., 2003)
- GeneID (Parra et al., 2000)

Use all available data and predictions when possible

Sequence Analysis Course © Whitehead Institute, 2005

20

Summary

- Multiple sequence alignments
- Sequence patterns
- · Sequence matrices
- Identifying regulatory sites
- Finding over-represented patterns and matrices
- · Gene finding

Sequence Analysis Course © Whitehead Institute, 2005

References

- Bioinformatics: Sequence and Genome Analysis, 2nd ed. David Mount. CSHL Press, 2004.
- Publications describing algorithms and software for
 - multiple sequence alignment
 - pattern and matrix analysis and searching
 - gene finding

Sequence Analysis Course © Whitehead Institute, 2005

22

Exercises

- 1. Investigating the mechanisms of miRNA activity through pattern searching
- 2. Studying transcriptional control with DNA matrices

Both involve computational analysis of data from recently published studies

23

Sequence Analysis Course ${\hbox{$\mathbb C$}}$ Whitehead Institute, 2005