

Sequence Analysis

II:

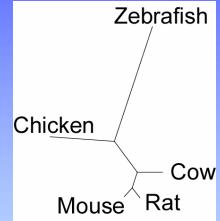
Sequence Patterns and Matrices

George Bell, Ph.D. WIBR Bioinformatics and Research Computing

Sequence Patterns and Matrices

- Multiple sequence alignments
- Sequence patterns
- Sequence matrices
- Identifying regulatory sites
- Finding overrepresented patterns and profiles
- Gene finding

Why use DNA patterns and matrices?


- To help search the genome for ...
 - Transcription start sites
 - Splice junctions (exon-intron boundaries)
 - Transcription factor binding sites
 - microRNA targets
 - Active sites for chromatin regulators
 - Gene regions encoding protein motifs
 - RNA folding patterns (hairpins, etc.)

Multiple sequence alignments (MSAs)

- Global MSA is computationally difficult
- As a result, MSA algorithms use approximate methods
- Independent of the chosen algorithm, choice of scoring matrix is important
- Aligning contigs vs. genes
- Aligning similar vs. divergent sequences

Global progressive MSA

- An MSA method that uses phylogenetic information to determine alignment order
- 1. Perform all pairwise alignments
- 2. Use alignment scores to create a tree
- 3. Align most similar pair of sequences and create consensus.
- Align next most similar pair of sequences and create consensus ...
 repeat until done

Rat GAATGATTGGATCGTGGCCC Mouse GAATGATTGGATTGTGGCCC Cow GAATGACTGGATTGTGGCCC Chicken GAACGATTGGATCGTGGCCC Zebrafish GAACGACTGGATTGTGGCCC

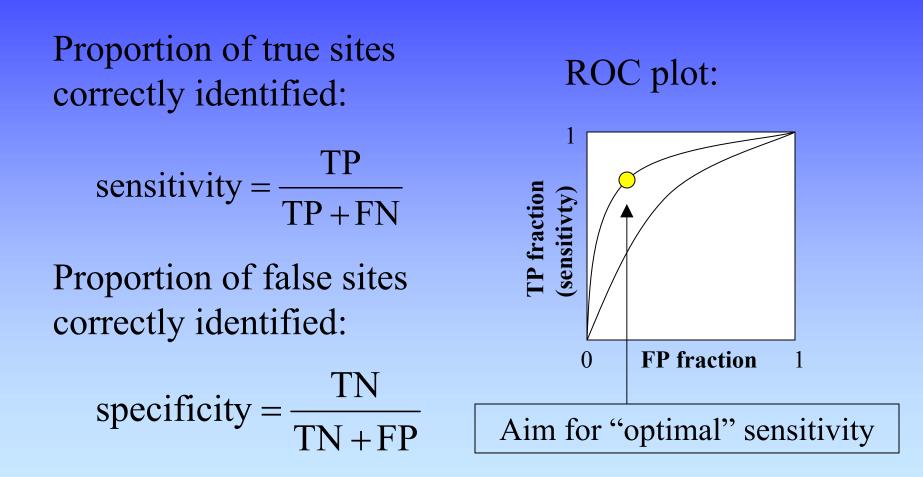
Sequence patterns

Pattern: an expression describing all possible combinations of bases in a sequence

- Generally derived from a MSA
- Ex1. EcoRI enzyme site: GAATTC
- Ex2. Codons for proline: CC[ACTG]; CCN
- Ex3. TATA box: TATA[AT][AGT][GA]
- Ex4. TFBS for GATA4: AGATA[AGT][AC]AGGGA
- Ex 5. Gene region encoding your favorite protein motif => better to use protein pattern!

More complex patterns

- May want to consider:
 - Mismatches
 - Insertions
 - Deletions
 - Alphabet reflecting ambiguity
- Ex: Patscan (Argonne National Laboratory) syntax
 - Pattern[Mismatches,Deletions,Insertions]
 - Ex: RRRRRYYYY[3,2,1]
 - (R = purine; Y = pyrimidine)

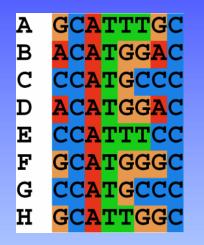

Pattern considerations

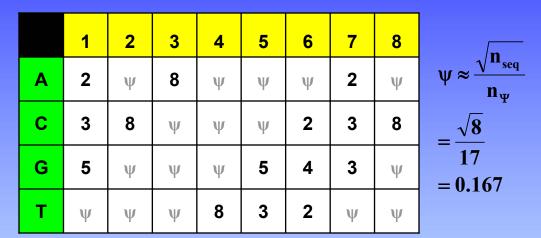
- Is there reliable data behind it?
- Is it specific and sensitive?
- How many matches would you expect by chance?
- Patterns don't represent the different probabilities of each combination of bases, just whether they can occur or not.
- DNA or protein?

Pattern searching programs

- Check examples or help for syntax
- EMBOSS:
 - fuzznuc: nucleic acid pattern search
 - fuzzpro: protein pattern search
 - dreg: regular expression search of a nucleotide sequence
- PatScan
- Perl (programming language) regular expressions

Sensitivity and Specificity

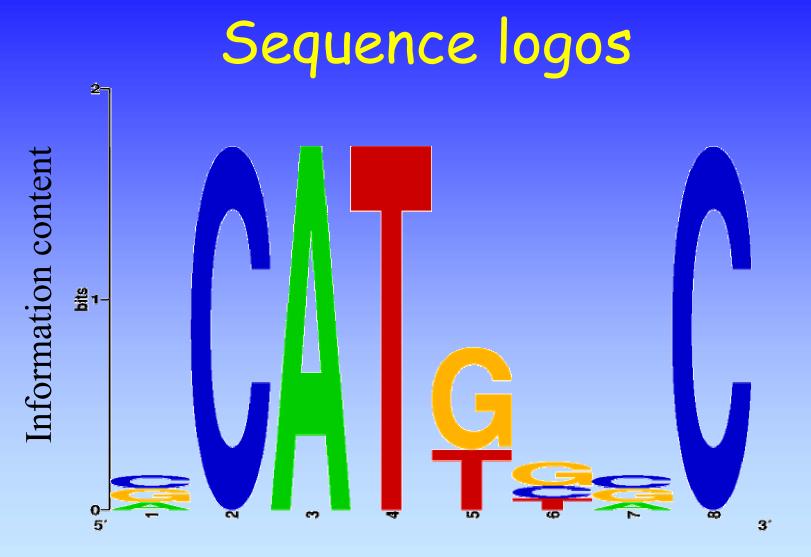

Matrix Representations


Matrix: a probabilistic representation of bases in a sequence

- Generally derived from a MSA
- Related to concept of "profile" (but no gaps allowed in MSA)
- Maintains meaning when transposed
- Position-specific scoring matrix (PSSM) assumes each position is independent
- Handling "zero" probabilities with pseudocounts

Creating a matrix (PSSM)

1. Create alignment 2. Count frequencies; add pseudocounts



3. Calculate log-odds scores: $\log_2 (\text{freq}_{\text{obs}}/\text{freq}_{\text{exp}})$

	1	2	3	4	5	6	7	8
А	-2.6	-2.6	2	-2.6	-2.6	-2.6	-2.6	-2.6
С	0.6	2	-2.6	-2.6	-2.6	-2.6	0.6	2
G	1.3	-2.6	-2.6	-2.6	1.3	1	0.6	-2.6
Т	-2.6	-2.6	-2.6	2	0.6	-2.6	-2.6	-2.6

12

Sequence Analysis Course © Whitehead Institute, 2005

For DNA, maximum bits = 2 (for perfect consensus)

Sequence Analysis Course © Whitehead Institute, 2005

Searching with matrices

• Slide matrix along sequence(s), take sum of logodds scores for base at each sequence position:

		1	2	3						1	2	3	
	Α	-2.6	-2.6	2	Ň	Ň	Ň	ĸ	А	-2.6	-2.6	2	
	С	0.6	2	-2.6					С	0.6	2	-2.6	
	G	1.3	-2.6	-2.6					G	1.3	-2.6	-2.6	
	Т	-2.6	-2.6	-2.6					Т	-2.6	-2.6	-2.6	
G	Т	A	С	G	Α	С	G	T	G	С	С	Α	Т

Example with sample matrix of length 3, showing scores at two positions

 $\Sigma = (-2.6) + 2 + (-2.6) \qquad \Sigma = 0.6 + 2 + 2$ = -3.2 = 4.6 Highest score wins

Sequence Analysis Course © Whitehead Institute, 2005

Hints for identifying regulatory sites

- Mask repetitive sequence first (RepeatMasker) to remove "non-functional noise"
- What specific area(s) of the sequence or genome can you search (instead of all of it)?
- Look at conservation: functional regulatory sites tend to be conserved
- ENCODE project (1% of human genome)

Identifying over-represented patterns

- 1. Count oligos of each sequence of expected length.
- 2. Calculate expected frequencies.
- 3. Rank observed/expected values.
- 4. Repeat for oligos of another length.

This method assumes the pattern is very specific

Identifying over-represented matrices

- Inputs
 - a set of sequences assumed to contain a matrix
 - range of presumed profile width?
 - ≥ 0 ("zoops") or ≥ 1 ("oops") occurrence per sequence?
- Programs
 - Meme: based on the expectation maximum (EM) algorithm; meme.sdsc.edu
 - AlignACE: based on the Gibbs sampling algorithm; atlas.med.harvard.edu

Meme sample output

MOTIF 2 width = 11 sites = 58	llr = 497 E-value = 1.1e-014 Motif 2 position-specific set	coring matrix
bits 2.5 2.2 2.0 1.7 <u>Information</u> 1.5 <u>content</u> 1.2 (12.4 bits) 1.0 0.7 0.5	log-odds matrix: alength= 4 w= 11 n= 32709 bayes= 9.7785 -64 -20 115 -41 30 -56 72 -76 -64 95 80 -122 -322 -1250 -237 153 -422 -1250 246 -1250 151 -337 -1250 -222 -1250 121 172 -1250 -1250 -1250 164 -105 218 -237 -1250 156 -1250 -1250 -264 -1250 72 -1250 114	53 E= 1.1e-014
	Motif 2 position-specific pro	bability matrix
Multilevel GACTGAGTCAT consensus TGG C C sequence A A	letter-probability matrix: alength= 4 w= 11 nsites= 58 E 0.206897 0.155172 0.396552 0.241379 0.396552 0.120690 0.293103 0.189655 0.206897 0.344828 0.310345 0.137931 0.034483 0.000000 0.034483 0.931034 0.017241 0.000000 0.982759 0.000000 0 913793 0 017241 0 000000 0 068966	3= 1.1e-014
NAME STRAND START		
iYEL063C - 363 iYER068W - 375	2.21e-07 TGTGGTTTCC GGGTGAGTCAT ACGGCTTTTT 4.21e-07 TTTTGATGTA GACTGAGTCAT TCGGATAAGA	
iYBR113W - 487	7.93e-07 CACCCGGATT GGCTGAGTCAC CTTCATCGCG	
iYHR161C + 407	7.93e-07 ACAAAAGCCA GGCTGAGTCAC GTCAGTTGCT	

Sequence Analysis Course © Whitehead Institute, 2005

Identifying features of genes in genomic DNA

- Splice sites
- Open reading frames
- Promoters
- Codon bias
- Expression information (ESTs, mRNA)
- Protein similarity to known genes
- Conservation across species

Gene finding programs (sample)

- GeneWise (Birney and Durbin, 2000)
- Genscan (Burge and Karlin, 1997)
- Acembly (Thierry-Mieg et al.)
- Twinscan (Korf et al., 2001)
- SGP (Parra et al., 2003)
- GeneID (Parra et al., 2000)
 Use all available data and predictions when possible

Summary

- Multiple sequence alignments
- Sequence patterns
- Sequence matrices
- Identifying regulatory sites
- Finding over-represented patterns and matrices
- Gene finding

- Bioinformatics: Sequence and Genome Analysis, 2nd ed. David Mount. CSHL Press, 2004.
- Publications describing algorithms and software for
 - multiple sequence alignment
 - pattern and matrix analysis and searching
 - gene finding

- 1. Investigating the mechanisms of miRNA activity through pattern searching
- 2. Studying transcriptional control with DNA matrices

Both involve computational analysis of data from recently published studies