

## Relational Databases for Biologists: Efficiently Managing and Manipulating Your Data

Session 2: Mining a database with SQL

George Bell, Ph.D.
WIBR Bioinformatics and Research Computing

Relational Databases for Biologists © Whitehead Institute, 2006

#### Session 2 Outline

- Review database basics
- · Review E-R diagrams and db4bio
- · Data types and values
- · Relational algebra
- Mining/querying a database with SQL
- · Querying multiple tables

Relational Databases for Biologists © Whitehead Institute, 2006

#### **Database Basics**

- Databases are composed of tables (relations)
- Tables are entities that have attributes (column labels) and tuples (rows)
- Databases can be designed from E R diagrams that are easily converted to tables
- Primary keys uniquely identify individual tuples and represent links between tables

Relational Databases for Biologists © Whitehead Institute, 2006

## Building an E-R Diagram

- · Identify data attributes
- Conceptualize entities by grouping related attributes
- · Identify relationships/links
- · Draw preliminary E-R diagram
- · Add cardinalities and references
- Refine E-R diagram by applying design principles

Relational Databases for Biologists © Whitehead Institute, 2006

## Database Normalization

- Goal: To design tables where every non key column is dependent on the key
  - Why? To reduce redundancy and improve efficiency
- · Main requirements:
  - Use primary keys
  - Remove subsets of data that apply to multiple rows of a table and place them in separate tables.
  - Remove columns that are not dependent upon the primary key and place them in separate tables.

Relational Databases for Biologists  $\ensuremath{\mathbb{C}}$  Whitehead Institute, 2006

# Connecting to MySQL

- (Optional) connect to another computer ssh hebrides.wi.mit.edu -l username
- Connect to MySQL database server mysql -u username -p -D db4bio -h hebrides.wi.mit.edu

mysql>

- · SQL commands are case insensitive
- · Tables and attributes are case sensitive

Relational Databases for Biologists © Whitehead Institute, 2006



## Number Data Types

- INT
  - Signed -2147483648 to 2147483647
  - Unsigned 1844674407370551615

#### FLOAT/DOUBLE[(M,D)]

- Decimal values, 1.234, 1.47564839E+5
- M is display size, D is number of decimals

#### DATE/DATETIME

- '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
- 'YYYY-MM-DD HH:MM:SS'

#### TIMESTAMP

- YYYYMMDDHHMMSS

Relational Databases for Biologists © Whitehead Institute, 2006

## Character Data Types

- · VARCHAR(M)
  - M characters is length, Text up to 255 characters
  - VARCHAR(5)
    - · Will store Apple as 'Apple'
    - Will store Pineapple as 'Pinea'

#### TEXT

- Text up to 65535 characters
- VARCHARs and TEXTs must always be described inside of quotes, single or double
  - Food = "Apple"

Relational Databases for Biologists © Whitehead Institute, 2006

### Data Values

- NULL vs. NOT NULL
  - Data can either require a value for each tuple or not need one.
- KEY
  - Primary keys must be NOT NULL
- Default
  - If an attribute was specified as NULL its default is automatically NULL (characters) or empty (numbers).
  - If an attribute was specified as NOT NULL its default value is automatically "" (characters) or zero (numbers).
  - The default value can also be specified manually.

Relational Databases for Biologists  $\ensuremath{\mathbb{C}}$  Whitehead Institute, 2006

# Using DESCRIBE

#### > DESCRIBE Data:

| +<br>  F | rield  | 1 | Туре        | 1 | Null | 1 | Key | 1 | Default | 1 | Extra |
|----------|--------|---|-------------|---|------|---|-----|---|---------|---|-------|
|          |        |   | varchar(30) |   |      | ı | PRI | ı |         | ı | i     |
| l e      | exptId | ı | varchar(10) | 1 |      | 1 | PRI | 1 |         | 1 | - 1   |
| 1        | level  | I | int(11)     | I |      | I |     | I | 0       | I | - 1   |

#### > DESCRIBE LocusDescr;

| +           | + |              | -+- |      | +- |     | + |         | +- |       | + |
|-------------|---|--------------|-----|------|----|-----|---|---------|----|-------|---|
| Field       | 1 | Type         | 1   | Null | 1  | Key | 1 | Default | Ī  | Extra | ļ |
| linkId      | ī | int(11)      | ı   |      | ī  | PRI | 1 | 0       | i  |       | ī |
| description | 1 | varchar(100) | 1   | YES  | 1  |     | 1 | NULL    | 1  |       | ı |
| species     | 1 | varchar(20)  | 1   | YES  | 1  |     | 1 | NULL    | 1  |       | ļ |

Relational Databases for Biologists © Whitehead Institute, 2006

# Relational Algebra

 Restrict: Remove tuples that don't fit a specific criteria.



Restric

 Project: Remove specific attributes



Project

Relational Databases for Biologists © Whitehead Institute, 2006



















Relational Databases for Biologists © Whitehead Institute, 2006



# Table Join • Taking the product of two matrices where merged tuples (rows) must satisfy a specific requirement A1 B1 A2 B2 A3 B3 Join B2 C2 B3 C3 Join Based on B Column A1 B1 C1 B2 C2 B3 C3 Join Based on B Column A2 B2 C2 A3 B3 C2

#### Natural Joins · Table joining links tables together through their relationships and allows you to traverse your schema/database · Use SELECT and FROM to join tables Join through common attributes with WHERE and AND using operators: =,<,>,!=,>=, <= · Traverse from descriptions to sources Descriptions Targets gbld affyld affyld description Sources exptld level Relational Databases for Biologists © Whitehead Institute, 2006













#### Table Self Join

- Identify relationships between data within a single table
- > SELECT Data1.affyld, Data1.exptld as exptld1, Data2.exptld as exptld2, Data1.level as level1, Data2.level as level2

FROM Data Data1, Data Data2 WHERE Data1.affyld=Data2.affyld AND Data1.level >= Data2.level\*2 LIMIT 5;

| <u>Data</u><br>affvld ← | Data<br>→ affvld |
|-------------------------|------------------|
| exptld                  | exptld           |
| level                   | level            |

| +<br>  affyId                                                                       | +   | exptId1                                      | 1 | exptId2                          | +   | level1                       | ] | Level2                            |
|-------------------------------------------------------------------------------------|-----|----------------------------------------------|---|----------------------------------|-----|------------------------------|---|-----------------------------------|
| AFFX-MurIL10_at   AFFX-MurIL4_at   AFFX-BioB-M_at   AFFX-BioB-M_at   AFFX-BioB-M_at | 111 | hs-cer-1<br>hs-cer-1<br>hs-cer-1<br>hs-cer-1 | 1 | hs-hrt-1<br>mm-cer-1<br>mm-hrt-1 | 111 | 8<br>77<br>214<br>214<br>214 |   | 4  <br>20  <br>20  <br>48  <br>20 |

Relational Databases for Biologists © Whitehead Institute, 2006

## Summary

- · Tables store data of specific types
- · Restrict and project





- · Mining/querying a database with SQL
- · Querying multiple tables
- Table joins highlight the relationships between data in a database

Relational Databases for Biologists © Whitehead Institute, 2006

#### Next Session

- · Build your own database!
- Use SQL to create tables and specify their structure
- Use SQL to INSERT and DELETE data into your database
- Use SQL to UPDATE/modify your database
- · Input data files directly into your database

Relational Databases for Biologists © Whitehead Institute, 2006