

# Relational Databases for Biologists: Efficiently Managing and Manipulating Your Data

Session 3
Building and modifying a database with SQL

George Bell, Ph.D.
WIBR Bioinformatics and Research Computing

Relational Databases for Biologists © Whitehead Institute, 2006

#### Session 3 Outline

- · SQL query review
- · Creating databases
- · Creating tables
- Altering table structure
- · Inserting data
- · Deleting data
- · Updating/modifying data
- Automating repetitive tasks

Relational Databases for Biologists © Whitehead Institute, 2006









## **Output Formats**

- Query from MySQL prompt
- Ending query with \G
   (in place of ';')

| +        | -+ |             | -+ |
|----------|----|-------------|----|
| gbId     | 1  | num_affyIds | 1  |
| +        | -+ |             | +  |
| J04423   | 1  | 14          | 1  |
| AC002397 | 1  | 12          | i  |
| AF109905 | 1  | 9           | i  |
| AF100956 | 1  | 9           | 1  |
| AL031228 | 1  | 8           | 1  |
| +        | -+ |             | -+ |

cpa db4bio

goaway

mirna

mysql sirna2

wibrunix

qo

mysql < q.sql</li>
 tab delimited output

| gbld<br>J04423 | num_affylds<br>14 |
|----------------|-------------------|
| AC002397       | 12                |
| AF109905       | 9                 |
| AF100956       | 9                 |
| AL031228       | 8                 |

| *********    | *********** | 1. | row | *****************   |
|--------------|-------------|----|-----|---------------------|
| gbId:        | J04423      |    |     |                     |
| num_affyIds: |             |    |     |                     |
| **********   | **********  | 2. | row | *****************   |
| gbId:        | AC002397    |    |     |                     |
| num affyIds: | 12          |    |     |                     |
| **********   | *********   | 3. | row | ******************* |
| gbId:        | AF109905    |    |     |                     |
| num affylds: |             |    |     |                     |
| **********   | **********  | 4. | row | ******************* |
| gbId:        | AF100956    |    |     |                     |
| num affyIds: | 9           |    |     |                     |
| **********   | *********   | 5. | row | ******************* |
| gbId:        | AL031228    |    |     |                     |
| num affyIds: | 8           |    |     |                     |

Relational Databases for Biologists © Whitehead Institute, 2006

## Access Privileges

- Restrict access and prevent accidental alteration of important information
- Can limit what individual users can see and do on particular databases and specific tables
- Access privileges are stored in the "mysql" database
- > GRANT ALL PRIVILEGES ON db4bio.\* TO superuser@"%" IDENTIFIED BY "password";
- > GRANT SELECT,INSERT ON db4bio.Data TO admin@"18.157.\*.\*" IDENTIFIED BY "pass2";

Relational Databases for Biologists © Whitehead Institute, 2006

#### CREATE DATABASE

 Allows you to create a new database on the database server

(if you have permission)

- > SHOW DATABASES;
- > CREATE DATABASE go;
- > SHOW DATABASES;
- > USE go;

Relational Databases for Biologists  ${\hbox{$\mathbb C$}}$  Whitehead Institute, 2006

## CREATE TABLE

 Translate an E-R diagram (schema) into a functioning database



> CREATE TABLE Descriptions ( gbld VARCHAR(20) NOT NULL, description VARCHAR(100), PRIMARY KEY (gbld)

| i  | Field               | i | Туре                        | i | Null | i  | Key | i            | Default | Extra |
|----|---------------------|---|-----------------------------|---|------|----|-----|--------------|---------|-------|
| 1. | gbId<br>description | • | varchar(20)<br>varchar(100) | • |      | 1  | PRI | <br> -<br> - | NULL    |       |
| +- |                     | + |                             | + |      | +- |     | +            |         |       |

Relational Databases for Biologists  ${\hbox{\o }}$  Whitehead Institute, 2006

## CREATE TABLE



> CREATE TABLE Targets (
affyld VARCHAR(20) NOT NULL,
gbld VARCHAR(20),
species VARCHAR(20),
PRIMARY KEY (affyld, gbld)

| Field | Type                                          | Null | Key            | Default | Extra |
|-------|-----------------------------------------------|------|----------------|---------|-------|
| gbId  | varchar(20)<br>  varchar(20)<br>  varchar(20) | i    | PRI  <br>  PRI | NULL    |       |

Relational Databases for Biologists © Whitehead Institute, 2006

#### ALTER TABLE

- Modify a table's attributes
  - Attribute names, type, null, key, default
  - Add or drop attributes
  - > ALTER TABLE Data CHANGE level level DOUBLE;
- > ALTER TABLE Data DROP COLUMN affyld;
- > ALTER TABLE Data RENAME level expression;
- > ALTER TABLE Data ADD date TIMESTAMP;
- > ALTER TABLE Data ADD PRIMARY KEY (exptId);
- > DROP TABLE Data;

Relational Databases for Biologists © Whitehead Institute, 2006

#### **INSERT INTO**

- · Finally, add data into tables
  - > INSERT INTO Data (level, exptld, affyld) VALUES (215, "hs-hrt-1", "100008\_at");

EXPLICIT ORDER

> INSERT INTO Data VALUES ("100008\_at", "hs-hrt-1", 215); IMPLIED ORDER

> INSERT INTO Data2 (affyld2,level2) SELECT Data.affyld, Data.level FROM Data WHERE Data.level < 250; DATA COPYING

Relational Databases for Biologists © Whitehead Institute, 2006

#### DELETE FROM

- · Delete data from tables
- Similar syntax as SELECT
  - > DELETE FROM Data WHERE exptId="hs-hrt-1";
  - > DELETE FROM Sources WHERE exptId= "hs-hrt-1";

BE CONSISTENT

Relational Databases for Biologists © Whitehead Institute, 2006

#### **UPDATE**

- · Modify data already stored in a table
- · Again, similar syntax as SELECT

> UPDATE Data SET exptId="hs-hrt-2" WHERE exptId="hs-hrt-1";

> UPDATE Data

MODIFY

> UPDATE Source

FIX

SET exptId= "ms-hrt-1", source="Mm" WHERE exptId="hs-hrt-1";

INTERNAL "NORMALIZATION"

SET level=level\*1.27 WHERE exptld="hs-hrt-1";

Relational Databases for Biologists © Whitehead Institute, 2006

# LOAD DATA And Export

 Read rows from a text file (in the current directory) into a table and vice versa

> > LOAD DATA LOCAL INFILE "data.txt" INTO TABLE db4bio.Data FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n';

Standard line ends: Macintosh = '\r' Windows = '\r\n'

> LOAD DATA LOCAL INFILE "data.txt" INTO TABLE db4bio.Data;

Assumes tabdelimited file, with lines ending in "\n"

> SELECT \* INTO OUTFILE "data.txt" FIELDS TERMINATED BY ',' FROM Data: But need access to computer with MvSQI

Relational Databases for Biologists © Whitehead Institute, 2006

# LOAD DATA warnings

mysql> LOAD DATA LOCAL INFILE "Hs\_sources\_test.txt"
 -> INTO TABLE Sources;
Query OK, 4 rows affected, 3 warnings (0.00 sec)
Records: 4 Deleted: 0 Skipped: 0 Warnings: 3

mysql> SHOW warnings;

3 rows in set (0.00 sec)

mysql> LOAD DATA LOCAL INFILE "Hs\_sources\_test.txt"
 -> INTO TABLE Sources;

-> INTO TABLE Sources; Query OK, 0 rows affected, 3 warnings (0.00 sec) Records: 4 Deleted: 0 Skipped: 4 Warnings: 3

Relational Databases for Biologists © Whitehead Institute, 2006

# Automating Repetitive Tasks

- Use .SQL files to perform SQL commands automatically
- · Automatically create a series of tables

% mysql -h hebrides.wi.mit.edu -u guest -p -D databasename < create.sql

 Feed a complicated query to the database and receive the results in A text file

% mysql -h hebrides.wi.mit.edu -u web -p -D db4bio < query1.sql > query1.out

Relational Databases for Biologists © Whitehead Institute, 2006

### Summary

- · Design databases with E-R diagrams
- Data mine using combinations of SELECT/FROM with WHERE, GROUP BY, HAVING, ORDER BY, and aggregates
- · Create and implement databases
- · Input and output data from databases
- · Modify existing data within databases

Relational Databases for Biologists © Whitehead Institute, 2006

# Advanced topics

- Query optimization (adding indexes)
- Dates and times
  - all expected functionality
- Mathematics functions: logs, trig, etc.
- "String" (text) functions
  - substring, concatenate, replace, case change, etc.
- · Nested queries
  - SELECT \* FROM Ontologies WHERE linkld IN (SELECT linkld FROM LocusLinks WHERE gbld LIKE "A82%");

Relational Databases for Biologists © Whitehead Institute, 2006

#### Where To Go From Here?

- · Consult SQL And MySQL Resources
  - http://www.mysql.com
  - Tutorial, Reference Manual
- · Graphical interfaces to MySQL
  - DBDesigner (free)
  - MySQL Administrator
  - SQL4XManagerJ (inexpensive)
  - Visio (Microsoft)
  - Visual Case (expensive)
- · Ensembl databases with open access
- · Sources of data to build your own:
  - UCSC Bioinformatics; Gene Ontology; Entrez Gene

Relational Databases for Biologists © Whitehead Institute, 2006

#### Course Goals

- Conceptualize data in terms of relations (database tables)
- · Design relational databases
- Use SQL commands to extract data from (mine) databases
- Use SQL commands to build and modify databases

Relational Databases for Biologists  ${\hbox{\o c}}$  Whitehead Institute, 2006

#### Exercises

- · Create tables
- · Input data
- Modify/delete particular data
- Accessing your own database:
   mysgl- uusername- p Dusername
  - hhebrides.wi.mit.edu

Relational Databases for Biologists  $\ensuremath{\mathbb{Q}}$  Whitehead Institute, 2006