
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Unix, Perl and BioPerl

II: Sequence Analysis with Perl

George Bell, Ph.D.
WIBR Bioinformatics and Research Computing

2
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Sequence Analysis with Perl
• Introduction
• Input/output
• Variables
• Functions
• Control structures
• Comparisons
• Sample scripts

3
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Objectives

• write, modify, and run simple Perl scripts

• design customized and streamlined
sequence manipulation and analysis
pipelines with Perl scripts

4
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Why Perl?
• Good for text processing

(sequences and data)
• Easy to learn and quick to write
• Built from good parts of lots of languages/tools
• Lots of bioinformatics tools available
• Open source: free for Unix, PC, and Mac
• TMTOWTDI

5
Unix, Perl, and BioPerl © Whitehead Institute, 2006

A first Perl program
• Create this program and call it hey.pl
#!/usr/local/bin/perl –w
The Perl “Hey” program
print "What is your name? ";
chomp ($name = <STDIN>);
print “Hey, $name, welcome to the
Bioinformatics course.\n”;

• To run: perl hey.pl or
• To run: chmod +x hey.pl

./hey.pl

6
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Perl Input/Output
• Types of input:

– keyboard (STDIN)
– files

• Types of output:
– screen (STDOUT)
– files

• Unix redirection can be very helpful
ex: ./hey.pl > hey_output.txt

7
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Variables
• Scalar variables start with $

$numSeq = 5; # number; no quotes
$seqName = “GAL4”; # “string”; use quotes
$level = -3.75; # numbers can be decimals too
print “The level of $seqName is $level\n”;
$_ default input variable

• Arrays (lists of scalar variables) start with @:

@genes = (“BMP2”, “GATA-2”, “Fez1”);

@orfs = (395, 475, 431);
print “The ORF of $genes[0] is $orfs[0] nt.”;
The ORF of BMP2 is 395 nt.

8
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Perl functions – a sample

sortlcpushreaddirs///

useucpopopendirsubstr

renamechmodjoinchdirlength

dieclosesplitmkdirchomp

m//openclosedirtr///print

9
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Control Structures 1
if (condition) # note that 0, “”, and (undefined) are false
{

do this; then this;. . .
}
else # optional; ‘if’ can be used alone; elsif also possible
{

do this instead;
}

if ($exp >= 2) # gene is up-regulated
{
print “The gene $seq is up-regulated ($exp)”;

}

10
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Control Structures 2
while (condition)
{

do this;
then this;. . .

}

while ($orfLength > 100)
{ # Add to table
print “$seq\t”; # “\t” = tab
print “$orfLength\n”; # “\n” = newline

}

11
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Control Structures 3
for (initialize; test; increment)
{

do this;. . .

}

for ($i = 0; $i <= $#seqs; $i++)
$#seqs = index of the last element in @seqs

{ # Add elements of @seqs and @orf to table
print “$seqs[$i]\t”;
print “$orf[$i]\n”;

}

12
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Arithmetic & numeric comparisons
• Arithmetic operators: + - / * %
• Notation: $i = $i + 1; $i += 1; $i++;

• Comparisons: > , < , <= , >= , = = , !=
if ($num1 != $num2)
{

print “$num1 and $num2 are different”;
}

• Note that = = is very different from =
= = used as a test: if ($num = = 50)
= used to assign a variable: $num = 50

13
Unix, Perl, and BioPerl © Whitehead Institute, 2006

String comparisons
• Choices: eq , ne

if ($gene1 ne $gene2)
{

print “$gene1 and $gene2 are different”;
}
else
{

print “$gene1 and $gene2 are the same”;
}

14
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Multiple comparisons

• AND &&
• OR ||

if (($exp > 2) ||
($exp > 1.5 && $numExp > 10))

{
print “Gene $gene is up-regulated”;

}

15
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Filehandles
To read from or write to a file in Perl, it first needs to be opened.
In general, open(filehandle, filename);

Filehandles can serve at least three purposes:
open(IN, $file); # Open for input
open(OUT, ">$file"); # Open for output
open(OUT, ">>$file"); # Open for appending

Then, get data all at once @lines = <IN>;

or one line at a time
while (<IN>) {

$line = $_; do stuff with this line;
print OUT “This line: $line”; }

16
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Embedding shell commands
• use backquotes (`) around shell command
• example using EMBOSS to reverse-complement:
`revseq mySeq.fa mySeq_rc.fa`;

• Capture stdout from shell command if desired
• EMBOSS qualifier “-filter” prints to stdout

$date = `date`;
$rev_comp = `revseq mySeq.fa -filter`;
print $date;
print “Reverse complement:\n$rev_comp\n”;

17
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Programming issues
• What should it do and when is it “finished”?
• Who will be using/updating your software?

– Reusability
– Commenting
– Error checking

• Development vs. execution time?
• Debugging tools: printing and commenting
• Beware of OBOB ("off-by-one bug")

18
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Example: patscan_batch.pl
#!/usr/local/bin/perl –w
Run patscan on all seqs in a folder
$myDir = “/home/elvis/seqs”;
$patFile = “/home/elvis/polyA.pat”;
chdir($myDir); # Go to $myDir
opendir(DIR, $myDir); # Open $myDir

foreach $seqFile (sort readdir(DIR))
{
if ($seqFile =~ /\.fa$/) # if file ends in .fa
{
print “Processing $seqFile\n”;
$outFile = $seqFile; # Create $outFile name
$outFile =~ s/\.fa/\.out/; # s/old/new/;
############ Run PATSCAN ###############
`scan_for_matches $patFile < $seqFile > patscan/$outFile`;

}
}

19
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Example: oligo analysis

sample fasta sequence:
>BB659629
GCCTGCTTGAGTTTTGAAGTCTTGGAGCCACAGAA
AGCACTGGCCAGAGGAGAGGTAATCACTTCTAATG
CCAGGCCTGCTGTGCAGTGCGCATGTGTGATCTCA
GTCTGCTTCTGCCCTAGCTAATGAAGGCATGGACA
ATGGAATAGCCACATGGCAGCACCGGAAAACAAGC
TTACTTCTGCAGTACACAGCCTGCTTTGCCTGATT
TCTGTCCACTGG

20
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Basic steps for oligos.pl

Open fasta sequence
Get raw sequence
Extract oligos
Analyze oligos
Print out results
(Modify script to analyze multiple seqs)

21
Unix, Perl, and BioPerl © Whitehead Institute, 2006

oligos.pl: part 1
#!/usr/local/bin/perl –w
Extract oligos from a sequence and analyze %GC
$seqFile = “mySeq.fa"; # input sequence
$mer = 35; # length of oligo to make
$start = 5; # nt to start oligos
$end = 11; # nt to stop oligos

Get continuous sequence from sequence file
open (SEQ, $seqFile) || die "cannot open $seqFile: $!";
@seq = <SEQ>; # make array of lines

$defline = $seq[0]; # get defline
$seq[0] = ""; # delete defline
$seq = join ("", @seq); # join($glue, @list)
$seq =~ s/\s*//g; # delete whitespace

22
Unix, Perl, and BioPerl © Whitehead Institute, 2006

oligos.pl: part 2
$seqLength = length ($seq);
print "Oligos ($mer mers) for $defline

($seqLength nt) and % GC content\n";

Beware of OBOB
for ($i = $start - 1; $i < $end - 1; $i++)
{

oligo = substr(seq, start, length);
$_ = substr($seq, $i, $mer);
$nt = $i + 1;
$numGC = tr/GC//; # count GCs
$pcGC = 100 * $numGC / $mer; # find %GC
print "$nt\t$_\t$pcGC\n";

}

23
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Summary
• Input/output
• Variables
• Functions (scalars and arrays)
• Control structures
• Comparisons
• Sample scripts:

– patscan_batch.pl
– oligos.pl

24
Unix, Perl, and BioPerl © Whitehead Institute, 2006

For more information, books:
• Learning Perl (Schwartz et al.) - O’Reilly

• The Perl CD Bookshelf - O’Reilly

• Beginning Perl for Bioinformatics – Tisdall

• ‘Using Perl to Facilitate Biological Analysis’ (Stein) in Bioinformatics
(Baxevanis & Ouellette)

• ‘Bioinformatics Programming using Perl and Perl Modules’ in
Bioinformatics: Sequence and Genome Analysis, 2nd ed. (Mount)

AND several good web sites (see course page)

25
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Demo scripts on the web site

• hey.pl
• input and output options
• patscan_batch.pl
• rev_comp.pl
• oligos.pl
• parse_genbank.pl

26
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Exercises

• Retrieving and aligning a list of human-
mouse orthologs

• Retrieving a set of genes encoding growth
factors, extracting their proximal promoters,
and analyzing them.

