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Sequence Analysis with Perl
• Introduction
• Input/output
• Variables
• Functions
• Control structures
• Comparisons
• Sample scripts
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Objectives

• write, modify, and run simple Perl scripts

• design customized and streamlined 
sequence manipulation and analysis 
pipelines with Perl scripts
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Why Perl?
• Good for text processing 

(sequences and data)
• Easy to learn and quick to write
• Built from good parts of lots of languages/tools
• Lots of bioinformatics tools available
• Open source: free for Unix, PC, and Mac
• TMTOWTDI
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A first Perl program
• Create this program and call it hey.pl
#!/usr/local/bin/perl –w
# The Perl “Hey” program
print "What is your name? "; 
chomp ($name = <STDIN>);
print “Hey, $name, welcome to the 
Bioinformatics course.\n”;

• To run: perl hey.pl or
• To run: chmod +x hey.pl

./hey.pl
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Perl Input/Output
• Types of input:

– keyboard (STDIN)
– files

• Types of output:
– screen (STDOUT)
– files

• Unix redirection can be very helpful
ex: ./hey.pl > hey_output.txt
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Variables
• Scalar variables start with $

$numSeq = 5;     # number; no quotes
$seqName = “GAL4”;  # “string”; use quotes
$level = -3.75; # numbers can be decimals too 
print “The level of $seqName is $level\n”;   
$_ default input variable 

• Arrays (lists of scalar variables) start with @:

@genes = (“BMP2”, “GATA-2”, “Fez1”);

@orfs = (395, 475, 431);
print “The ORF of $genes[0] is $orfs[0] nt.”;
# The ORF of BMP2 is 395 nt.
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Perl functions – a sample

sortlcpushreaddirs///

useucpopopendirsubstr

renamechmodjoinchdirlength

dieclosesplitmkdirchomp

m//openclosedirtr///print
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Control Structures 1
if (condition) # note that 0, “”, and (undefined) are false
{

do this; then this;. . . 
}
else # optional; ‘if’ can be used alone; elsif also possible 
{

do this instead;   
}

if ($exp >= 2) # gene is up-regulated
{
print “The gene $seq is up-regulated ($exp)”;

}
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Control Structures 2
while (condition)
{

do this; 
then this;. . . 

}

while ($orfLength > 100)
{ # Add to table
print “$seq\t”; # “\t” = tab
print “$orfLength\n”; # “\n” = newline

}
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Control Structures 3
for (initialize; test; increment )
{

do this;. . .  

}

for ($i = 0; $i <= $#seqs; $i++)
# $#seqs = index of the last element in @seqs

{ # Add elements of @seqs and @orf to table
print “$seqs[$i]\t”;
print “$orf[$i]\n”;

}



12
Unix, Perl, and BioPerl © Whitehead Institute, 2006

Arithmetic & numeric comparisons
• Arithmetic operators:  +  - /  *  %
• Notation:    $i = $i + 1; $i += 1;   $i++;

• Comparisons:  > , < , <= , >= , = = , !=
if ($num1 != $num2)
{

print “$num1 and $num2 are different”;
}

• Note that = = is very different from = 
= =    used as a test: if ($num = = 50) 
= used to assign a variable:   $num = 50
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String comparisons
• Choices:  eq , ne

if ($gene1 ne $gene2)
{

print “$gene1 and $gene2 are different”;
}
else
{

print “$gene1 and $gene2 are the same”;
}
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Multiple comparisons

• AND &&
• OR ||

if (($exp > 2) || 
($exp > 1.5 && $numExp > 10))

{
print “Gene $gene is up-regulated”;

}
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Filehandles
To read from or write to a file in Perl, it first needs to be opened.
In general, open(filehandle, filename);

Filehandles can serve at least three purposes:
open(IN, $file);        # Open for input 
open(OUT, ">$file");   # Open for output 
open(OUT, ">>$file"); # Open for appending

Then, get data all at once @lines = <IN>;

or one line at a time
while (<IN>) { 

$line = $_; do stuff with this line; 
print OUT “This line: $line”; }
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Embedding shell commands
• use backquotes ( ` ) around shell command
• example using EMBOSS to reverse-complement:
`revseq mySeq.fa mySeq_rc.fa`;

• Capture stdout from shell command if desired
• EMBOSS qualifier “-filter” prints to stdout

$date = `date`;
$rev_comp = `revseq mySeq.fa -filter`;
print $date;
print “Reverse complement:\n$rev_comp\n”;
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Programming issues
• What should it do and when is it “finished”?
• Who will be using/updating your software?

– Reusability
– Commenting
– Error checking

• Development vs. execution time?
• Debugging tools: printing and commenting
• Beware of OBOB ("off-by-one bug")
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Example: patscan_batch.pl
#!/usr/local/bin/perl –w
# Run patscan on all seqs in a folder
$myDir = “/home/elvis/seqs”;
$patFile = “/home/elvis/polyA.pat”;
chdir($myDir); # Go to $myDir
opendir(DIR, $myDir); # Open $myDir

foreach $seqFile (sort readdir(DIR))
{
if ($seqFile =~ /\.fa$/) # if file ends in .fa
{
print “Processing $seqFile\n”;
$outFile = $seqFile; # Create $outFile name
$outFile =~ s/\.fa/\.out/; # s/old/new/; 
############  Run PATSCAN  ###############
`scan_for_matches $patFile < $seqFile > patscan/$outFile`;

} 
}
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Example: oligo analysis

sample fasta sequence:
>BB659629 
GCCTGCTTGAGTTTTGAAGTCTTGGAGCCACAGAA
AGCACTGGCCAGAGGAGAGGTAATCACTTCTAATG
CCAGGCCTGCTGTGCAGTGCGCATGTGTGATCTCA
GTCTGCTTCTGCCCTAGCTAATGAAGGCATGGACA
ATGGAATAGCCACATGGCAGCACCGGAAAACAAGC
TTACTTCTGCAGTACACAGCCTGCTTTGCCTGATT
TCTGTCCACTGG
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Basic steps for oligos.pl

Open fasta sequence
Get raw sequence
Extract oligos
Analyze oligos
Print out results
(Modify script to analyze multiple seqs)
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oligos.pl: part 1
#!/usr/local/bin/perl –w
# Extract oligos from a sequence and analyze %GC
$seqFile = “mySeq.fa"; # input sequence
$mer = 35; # length of oligo to make
$start = 5; # nt to start oligos
$end = 11; # nt to stop oligos

# Get continuous sequence from sequence file 
open (SEQ, $seqFile ) || die "cannot open $seqFile: $!";
@seq = <SEQ>; # make array of lines

$defline = $seq[0]; # get defline
$seq[0] = ""; # delete defline
$seq = join ("", @seq); # join($glue, @list)
$seq =~ s/\s*//g; # delete whitespace
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oligos.pl: part 2
$seqLength = length ($seq); 
print "Oligos ($mer mers) for $defline

($seqLength nt) and % GC content\n";

# Beware of OBOB
for ($i = $start - 1; $i < $end - 1; $i++)
{

# oligo = substr(seq, start, length);
$_ = substr($seq, $i, $mer); 
$nt = $i + 1; 
$numGC = tr/GC//; # count GCs
$pcGC = 100 * $numGC / $mer; # find %GC
print "$nt\t$_\t$pcGC\n";

}
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Summary
• Input/output
• Variables
• Functions (scalars and arrays)
• Control structures
• Comparisons
• Sample scripts:

– patscan_batch.pl
– oligos.pl
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For more information, books:
• Learning Perl (Schwartz et al.) - O’Reilly

• The Perl CD Bookshelf - O’Reilly

• Beginning Perl for Bioinformatics – Tisdall

• ‘Using Perl to Facilitate Biological Analysis’ (Stein) in Bioinformatics
(Baxevanis & Ouellette)

• ‘Bioinformatics Programming using Perl and Perl Modules’ in 
Bioinformatics: Sequence and Genome Analysis, 2nd ed. (Mount)

AND several good web sites (see course page)
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Demo scripts on the web site

• hey.pl
• input and output options
• patscan_batch.pl
• rev_comp.pl
• oligos.pl
• parse_genbank.pl
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Exercises

• Retrieving and aligning a list of human-
mouse orthologs

• Retrieving a set of genes encoding growth 
factors, extracting their proximal promoters, 
and analyzing them.


