

Analysis of Microarray Data

Lecture 2:

Differential Expression, Filtering and Clustering

George Bell, Ph.D. Senior Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute

Outline

- · Review
- Measuring differential expression
- Multiple hypothesis testing
- · Gene filtering
- · Measuring distance between profiles
- · Clustering methods

WIBR Microarray Course, © Whitehead Institute, 2007

Review

- Assumption: Expression microarrays measure specific mRNA levels
- Why perform the experiment?
- What best design addresses your goals?
- Normalize to increase power of comparisons.
- Precision doesn't necessarily indicate analysis success.
- Does your analysis pipeline make sense biologically and statistically?

WIBR Microarray Course, © Whitehead Institute, 2007

Caveats and limitations

- Are the probes on the chip for a specific transcript? gene?
- Are mRNA levels correlated with transcription activity?
- Is transcriptional regulation important?
- Are mRNA levels correlated with protein activity?
- Is this the best technology to answer your question(s)?

WIBR Microarray Course, © Whitehead Institute, 2007

Measuring differential expression

- One common goal is to rank all the genes on a chip in order of evidence for differential expression
- Ways to score genes:
 - Fold change
 - T-statistic p-value
 - Another statistic (nonparametric, etc.)
 - A combination of several scores

WIBR Microarray Course, © Whitehead Institute, 2007

Fold change

• Advantage: Fold change makes sense to biologists

Fold change = $\frac{\text{expression value in sample 1}}{\text{expression value in sample 2}}$

- · What cutoff should be used?
- Should it be the same for all genes?
- Disadvantages:
 - Only mean values not variability are considered
 - Genes with large variances are more likely to make the cutoff just because of noise

Hypothesis testing

- We may want to test ...
 - Is the expression of my gene different in a set in one condition compared to another condition?
 - How big is the difference?
 - Is the mean of one set of values different from the mean of another set of values?
 - If we say "yes", how much confidence do we have that the means are truly different?
- Assumptions:
 - Data are normally distributed
 - Samples are randomly chosen

WIBR Microarray Course, © Whitehead Institute, 2007

Hypothesis testing with the t-test

- · Considers mean values and variability
- Equation for the t-statistic in the Welch test:

$$t = \frac{\text{mean}_r - \text{mean}}{\sqrt{\frac{s_r^2}{n_r} + \frac{s_g^2}{n_g}}}$$

... and then a p-value is calculated

r; g = data sets to compare s = standard deviation

n = no. of measurements

Disadvantages:

- Genes with small variances are more likely to make the cutoff
- Works best with larger data sets than one usually has

WIBR Microarray Course, © Whitehead Institute, 2007

Flavors of the t-test

- Are we only considering up-regulated or downregulated genes, or both?
 - If both, perform a 2-tailed test
- Can we assume that the variance of the gene is similar in both samples?
 - Yes => Homoscedastic (the standard t-test)
 - No => Heteroscedastic (Welch's test)
- Moderated t-tests: pool data for many genes.
 - Significance Analysis of Microarrays (SAM)
 - Limma (Bioconductor)

 $t = \frac{\overline{x_1 - x_2}}{s + s_0}$

WIBR Microarray Course, © Whitehead Institute, 200

ANOVA

- Analysis of variance like a multidimensional t-test
- Measure effect of multiple treatments and their interactions
- A thoughtful ANOVA design can help answer several questions with one analysis
- ANOVA can also analyze factors that should be controlled

 just to confirm absence of confounding effects
- ANOVA generally identifies genes that are influenced by some factor – but then post-hoc tests must be run to identify the specific nature of the influence
 - Ex: t-tests between all pairs of data

WIBR Microarray Course, © Whitehead Institute, 200

Bootstrap analysis

- · Powerful non-parametric statistical tests
- Do not assume a normal distribution but do require a lot of computer time
- Example: Compare means of two sets of data while creating a custom distribution
 - Shuffle data and calculate t statistic
 - Repeat at least 1000 times
 - How often is the result more extreme that the real data?
- Calculate the p-value from your distribution

WIBR Microarray Course, © Whitehead Institute, 200

Combining p-values and fold changes

- What's important biologically?
 - How significant is the difference?
 - How large is the difference?
- Both amounts can be used to identify genes.
- What cutoffs to use?
- How many genes should be selected?
- Where are your positive controls?
- Moderated t-tests do something like this.

WIBR Microarray Course, © Whitehead Institute, 2007

Differential expression - summary

- Multiple methods can produce lists of differentially expressed genes
- Which ways make most sense biologically and statistically?
- · Be aware of multiple hypothesis testing
- Looking at all the data: volcano plots
- Where do your positive controls fit in?
- There may be no single best way

WIBR Microarray Course, © Whitehead Institute, 2007

Multiple hypothesis testing

- We need both sensitivity and specificity:
 - Sensitivity: probability of successfully identifying a real effect
 - Specificity: probability of successfully rejecting a nonexistent effect
 - These are inversely related.
- The problem
 - The number of false positives greatly increases as one performs more and more t-tests
 - How seriously do you want to limit false positives?

WIBR Microarray Course, © Whitehead Institute, 200

Why correct for multiple hypothesis testing?

Number of genes tested (N)	FP incidence (p < 0.05)	Probability of $>= 1$ FPs $100(1-0.95^{N})$
1	1 / 20	5%
10	10 / 20	40.1%
100	100 / 20	99.4%

FP = false positive

WIBR Microarray Course, © Whitehead Institute, 2007

Correcting for multiple hypothesis testing

- · If false positives are not tolerated
 - Perform Bonferroni correction
 - If you perform 100 t-tests, multiply each p-value by 100 to get corrected (adjusted) values $p=0.0005 \implies p=0.05$
- If false positives can be tolerated
 - Use False Discovery Rate (FDR)
 - If you can tolerate 15% false positives, calculate FDR p-values and then select 0.15 as your threshold
- FDR method is less conservative than Bonferroni and usually more appropriate for microarrays.

WIBR Microarray Course, © Whitehead Institute, 2007

Performing a FDR correction

- Sort list of p-values in increasing orderStarting at the bottom row,
- corrected p-value = the minimum between
 - 1: raw p-value * (n/rank)
 - 2: corrected p-value below
 - n is the number of tests
 - rank is the position in the sorted list
- Example: a microarray assays 5 genes for differential expression

order of calculation	Gene	Rank	Raw p-value	Formula	Corrected p-value	
	C	1	0.001	min (0.001 * (5/1), 0.0125)	0.005	
		A	2	0.005	min (0.005 * (5/2), 0.017)	0.0125
	В	3	0.01	min (0.01 * (5/3), 0.063)	0.017	
		E	4	0.05	min (0.05 * (5/4), 0.1)	0.063
		D	5	0.1	0.1 * (5/5)	0.1

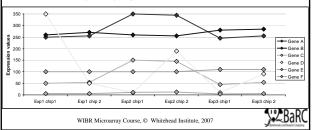
Gene filtering

- · An infinite number of methods can select "interesting" genes
- Not all genes on the chip need consideration: any meaningful selection is
- Filtering by function: using GO or other annotations
- Often the major question: How many genes to choose for further analysis?

WIBR Microarray Course, © Whitehead Institute, 2007

Measuring distance between profiles

- · Distance metric is most important choice when comparing genes and/or experiments
- What are you trying to do?



Common distance metrics

- · Pearson correlation
 - Measures the difference in the shape of two curves
 - Modification: absolute correlation
- Euclidean distance: multidimensional Pythagorean Theorem
 - Measures the distance between two curves
- Nonparametric or Rank Correlation
 - Similar to the Pearson correlation but data values are replaced with their ranks
 - Ex: Spearman Rank, Kendall's Tau
 - More robust (against outliers) than other methods

Clustering and segmenting

- Goal: organize a set of data to show relationships between data elements
- With microarray analysis: genes and/or chips
- Most data does not inherently exist in
- Clustering vs segmenting
- Most effective with optimal quantity of data
- Interpretation of data in obvious clusters: is it filtered?

Clustering basics

- How to start:
 - One big cluster (divisive)
 - n clusters for n objects (agglomerative)
 - K clusters, where k is some pre-defined number
- Hierarchical agglomerative clustering
 - Popular method producing a tree showing relationships between objects (genes or chips)
 - Start by creating an all vs. all distance matrix
 - Fuse closest objects, then...

Representing groups of objects during clustering

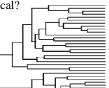
How is distance measured to a cluster of objects?

- Single linkage (a)
 - minimum distance
- Complete linkage (b)
 - maximum distance
- Average linkage (c) - average distance
- Centroid linkage (d)
 - distance to "centroid" of group

Representing clustered data

- Hierarchical clustering produces a dendrogram showing relationships between objects
- Are the data really hierarchical?
- · Order of leaves
- How can objects be partitioned into groups?
 - k-means clustering
 - self-organizing maps
 - How many clusters (k)?
- Original distance matrix may be more informative

WIBR Microarray Course, © Whitehead Institute, 2007



Summary

- Determining differential expression:
 - t-test, fold change, etc.
 - methods may be used in combination
- · Correcting for multiple hypothesis testing
 - Bonferroni, False Discovery Rate, etc.
- · Distance metrics: select carefully
- Clustering/segmentation types and methods
 - hierarchical, k-means, etc.; linkage types
 - Which protocol is best for your experiment?

WIBR Microarray Course, © Whitehead Institute, 2007

References

- · Dov Stekel. Microarray Bioinformatics. Cambridge, 2003.
- Speed, T. (ed.) <u>Statistical Analysis of Microarray Data</u>. Chapman & Hall, 2003
- Smyth GK et al. Statistical issues in cDNA microarray data analysis. Methods Mol Biol. 224:111-36, 2003.
- Pavlidis P. Using ANOVA for gene selection from microarray studies of the nervous system. Methods. 31(4):282-9, 2003.
- Quackenbush J. Computational analysis of microarray data.
 Nature Reviews Genetics 2:418-427, 2001.

WIBR Microarray Course, © Whitehead Institute, 200

Microarray tools

- · Course page:
 - http://jura.wi.mit.edu/bio/education/bioinfo2007/arrays/
- BaRC analysis tools:
 - http://jura.wi.mit.edu/bioc/tools/
- Bioconductor (R statistics package)
 - http://www.bioconductor.org/
- Excel
- · Many commercial and open source packages
- · Cluster 3.0 and Java TreeView

WIBR Microarray Course, © Whitehead Institute, 2007

Selecting a large matrix in Excel

1	Select the bottom right cell of the desired matrix		
2	Control - Shift - Up arrow	Select everything above the original cell	
3	Control - Shift - Left arrow	Select everything to the left of the original cell	
4	Shift - Down arrow	Move down one row	
5	Shift - Right arrow	Move to the right one column	

WIBR Microarray Course, © Whitehead Institute, 2007

Exercise 2: Excel functions

- LOG
- IF
- TTEST
- CONCATENATE
- VLOOKUP
- MIN
- RANK

Exercise 2 - To do

- Use t-test to identify differentially expressed genes
- Use the "Absent/Present" calls from the Affymetrix algorithm to filter out genes with questionable expression levels
- List all the gene IDs for those that meet your significance threshold (such as p < 0.05) and are present in at least one sample.
- Gather expression data for these genes
- Cluster this selected data (multiple methods)
- Visualize clustered data as a heatmap

