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Review
¢ Assumption: Expression microarrays
measure specific mMRNA levels
¢ Why perform the experiment?
« What best design addresses your goals?

¢ Normalize to increase power of
comparisons.

« Precision doesn’t necessarily indicate
analysis success.

¢ Does your analysis pipeline make sense
biologically and statistically?
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Caveats and limitations

Are the probes on the chip for a specific
transcript? gene?

Are mRNA levels correlated with
transcription activity?

Is transcriptional regulation important?
Are mRNA levels correlated with protein
activity?

Is this the best technology to answer your
guestion(s)?
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Measuring differential expression

* One common goal is to rank all the genes
on a chip in order of evidence for
differential expression

» Ways to score genes:

— Fold change

— T-statistic p-value

— Another statistic (nonparametric, etc.)
— A combination of several scores

WIBR Microarray Course, © Whitehead Institute, 2007 @Ba RC

Fold change

Advantage: Fold change makes sense to biologists
expression valuein samplel

expression value in sample 2

What cutoff should be used?

Should it be the same for all genes?
Disadvantages:

— Only mean values — not variability — are considered

— Genes with large variances are more likely to make the
cutoff just because of noise
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Fold change =




Hypothesis testing

+ We may want to test ...

— Is the expression of my gene different in a set in one
condition compared to another condition?

— How big is the difference?

— Is the mean of one set of values different from the mean
of another set of values?

— If we say “yes”, how much confidence do we have that
the means are truly different?
« Assumptions:
— Data are normally distributed
— Samples are randomly chosen
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Hypothesis testing with the f-test

« Considers mean values and variability
 Equation for the t-statistic in the Welch test:
mean —mean
t= ... and then a p-value is calculated
r; g = data sets to compare
s = standard deviation
n =no. of measurements

« Disadvantages:

— Genes with small variances are more likely to make
the cutoff

— Works best with larger data sets than one usually has
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Flavors of the t-test

« Are we only considering up-regulated or down-
regulated genes, or both?
— If both, perform a 2-tailed test
« Can we assume that the variance of the gene is
similar in both samples?
— Yes => Homoscedastic (the standard t-test)
— No => Heteroscedastic (Welch’s test)
» Moderated t-tests: pool data for many genes
— Significance Analysis of Microarrays (SAM)
— Limma (Bioconductor) Xi—Xs
t= S+S,
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ANOVA

¢ Analysis of variance — like a multidimensional t-test
* Measure effect of multiple treatments and their interactions

¢ A thoughtful ANOVA design can help answer several
questions with one analysis

« ANOVA can also analyze factors that should be controlled
— just to confirm absence of confounding effects

¢ ANOVA generally identifies genes that are influenced by
some factor — but then post-hoc tests must be run to
identify the specific nature of the influence

— EXx: t-tests between all pairs of data
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Bootstrap analysis

 Powerful non-parametric statistical tests
« Do not assume a normal distribution but do

require a lot of computer time
« Example: Compare means of two sets of data

while creating a custom distribution

— Shuffle data and calculate t statistic

— Repeat at least 1000 times

— How often is the result more extreme that the real data?
« Calculate the p-value from your distribution
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Combining p-values and fold changes

What’s important biologically?
— How significant is the difference?
— How large is the difference?

« Both amounts can be used to identify genes.
What cutoffs to use?

« How many genes should be selected?

« Where are your positive controls?
Moderated t-tests do something like this.
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Differential expression - summary

Multiple methods can produce lists of
differentially expressed genes

« Which ways make most sense biologically
and statistically?

« Be aware of multiple hypothesis testing
Looking at all the data: volcano plots
Where do your positive controls fit in?
There may be no single best way
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Multiple hypothesis testing

* We need both sensitivity and specificity:

— Sensitivity: probability of successfully identifying a real
effect

— Specificity: probability of successfully rejecting a
nonexistent effect
— These are inversely related.
e The problem

— The number of false positives greatly increases as one
performs more and more t-tests

— How seriously do you want to limit false positives?
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Why correct for
multiple hypothesis testing?

Number of FP incidence Probability of >= 1 FPs
gene(s '\};ested (p < 0.05) 100(1 - 0.95V)
1 1/20 5%
10 10/20 40.1%
100 100/20 99.4%

FP = false positive
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Correcting for multiple
hypothesis testing

« If false positives are not tolerated
— Perform Bonferroni correction

— If you perform 100 t-tests, multiply each p-value by
100 to get corrected (adjusted) values

p=0.0005 => p=0.05
« |f false positives can be tolerated
— Use False Discovery Rate (FDR)

— If you can tolerate 15% false positives, calculate FDR
p-values and then select 0.15 as your threshold

* FDR method is less conservative than Bonferroni
and usually more appropriate for microarrays.
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Performing a FDR correction

« Sort list of p-values in increasing order
« Starting at the bottom row,
corrected p-value = the minimum between
1: raw p-value * (n/rank)
2: corrected p-value below
— n s the number of tests
— rank is the position in the sorted list
Example: a microarray assays 5 genes for differential expression

8 Gene Rank Raw p-value Formula Corrected p-value
g c 1 0.001 min (0.001 * (5/1), 0.0125) 0005

73 A 2 0.005 min (0.005 * (5/2), 0.017) 00125

5 B 3 001 min (0.01 * (5/3), 0.063) 0.017

5 E 4 005 min (0.05 * (5/4), 0.1) 0.063

g D 5 01 0.1* (5/5)

01
WIBR Microarray Course, © Whitehead Institute, 2007 @Ba RC




Gene filtering

* An infinite number of methods can select
“interesting” genes

Not all genes on the chip need
consideration: any meaningful selection is
possible

Filtering by function: using GO or other
annotations

Often the major question: How many genes
to choose for further analysis?
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Measuring distance between profiles

 Distance metric is most important choice when
comparing genes and/or experiments

* What are you trying to do?
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Common distance metrics

* Pearson correlation
— Measures the difference in the shape of two curves
— Modification: absolute correlation
 Euclidean distance: multidimensional Pythagorean
Theorem
— Measures the distance between two curves
» Nonparametric or Rank Correlation

— Similar to the Pearson correlation but data values are
replaced with their ranks

— Ex: Spearman Rank, Kendall’s Tau
— More robust (against outliers) than other methods
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Clustering basics

¢ How to start:

— One big cluster (divisive)

— n clusters for n objects (agglomerative)

— K clusters, where k is some pre-defined number
« Hierarchical agglomerative clustering

— Popular method producing a tree showing
relationships between objects (genes or chips)

— Start by creating an all vs. all distance matrix
— Fuse closest objects, then...
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Clustering and segmenting

Goal: organize a set of data to show
relationships between data elements

With microarray analysis: genes and/or
chips

Most data does not inherently exist in
clusters

Clustering vs segmenting

Most effective with optimal quantity of data

Interpretation of data in obvious clusters: is
it filtered?
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Representing groups of objects
during clustering

How is distance measured to a cluster of objects?
 Single linkage ()
— minimum distance
¢ Complete linkage ()
— maximum distance
* Average linkage (o
— average distance
« Centroid linkage ()
— distance to “centroid” of group
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Representing clustered data Summary

« Hierarchical clustering produces a dendrogram
showing relationships between objects

Determining differential expression:
— t-test, fold change, etc.

* Are the data really hielz\lrftzrchical? — methods may be used in combination
* Order of leaves 2 « Correcting for multiple hypothesis testing
* How can objects be — Bonferroni, False Discovery Rate, etc.

partitioned into groups?

— k-means clustering

— self-organizing maps r'—E

— How many clusters (k)? L =
« Original distance matrix may be more

Distance metrics: select carefully
Clustering/segmentation types and methods
— hierarchical, k-means, etc.; linkage types

— Which protocol is best for your experiment?

informative
WIBR Microarray Course, © Whitehead Institute, 2007 Ba RC WIBR Microarray Course, © Whitehead Institute, 2007 Ba RC
References Microarray tools
« Dov Stekel. Microarray Bioinformatics. Cambridge, 2003. « Course page:
* Speed, T. (ed) Statistical Analysis of Microarray Data. _ http://jura.wi.mit.edu/bio/education/bioinfo2007/arrays/

Chapman & Hall, 2003

* Smyth GK et al. Statistical issues in cDNA microarray data * BaRC analysis tools:

analysis. Methods Mol Biol. 224:111-36, 2003. — http://jura.wi.mit.edu/bioc/tools/
« Pavlidis P. Using ANOVA for gene selection from « Bioconductor (R statistics package)
microarray studies of the nervous system. Methods. — http://www.bioconductor.org/

31(4):282-9, 2003.
Quackenbush J. Computational analysis of microarray data.
Nature Reviews Genetics 2:418-427, 2001.

« Excel
« Many commercial and open source packages
¢ Cluster 3.0 and Java TreeView
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Selecting a large matrix in Excel Exercise 2: Excel functions

1 |Select the bottom right cell of the desired matrix
5 Control - Shift - Up |Select everything above : II‘FOG

arrow the original cell

Control - Shift - Left | Select everything to the - TTEST
3 arrow left of the original cell * CONCATENATE

* VLOOKUP
4 | Shift - Down arrow | Move down one row « MIN
5 | Shift - Right arrow Move to the right one * RANK
column
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Exercise 2 - To do

Use t-test to identify differentially expressed genes

Use the "Absent/Present" calls from the
Affymetrix algorithm to filter out genes with
questionable expression levels

List all the gene IDs for those that meet your

significance threshold (such as p < 0.05) and are

present in at least one sample.

Gather expression data for these genes
Cluster this selected data (multiple methods)
Visualize clustered data as a heatmap
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