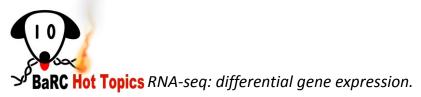
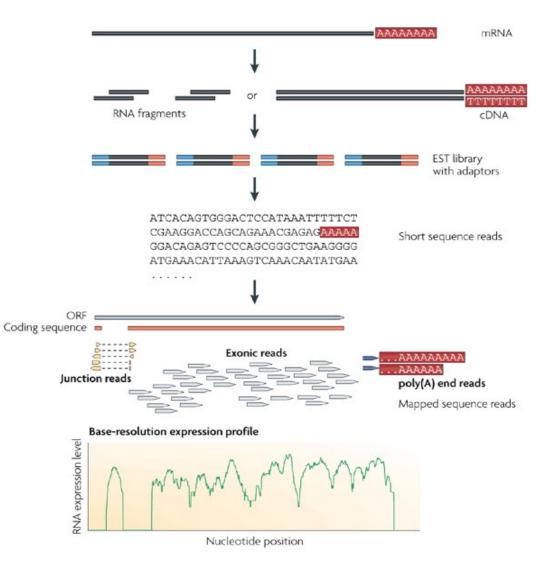

RNA-seq: A practical guide to the analysis of differential gene expression

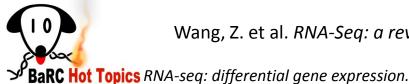
December 1st, 2011

1


RNA-seq Applications

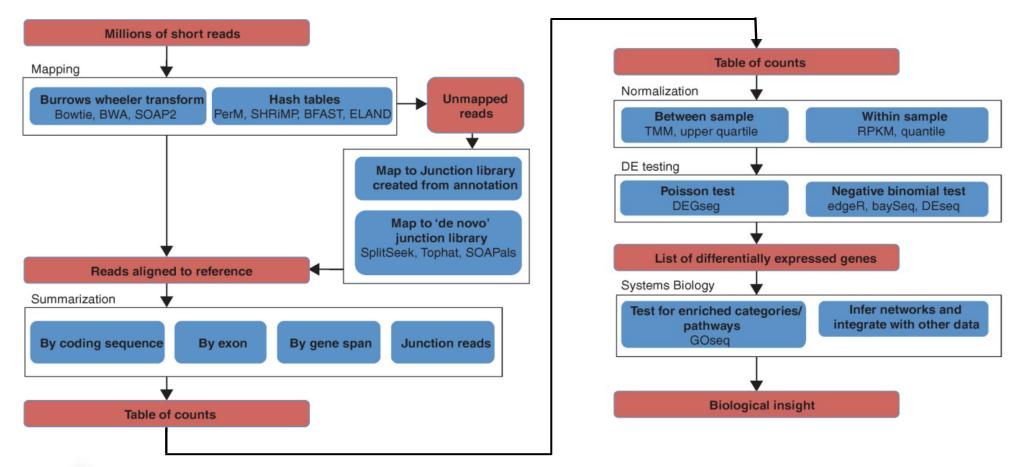
Annotation


Identify novel genes, transcripts, exons, splicing events, ncRNAs.


- Detecting RNA editing and SNPs.
- Measurements: RNA quantification and differential gene expression

Abundance of transcripts between different conditions

RNA-Seq Experiment



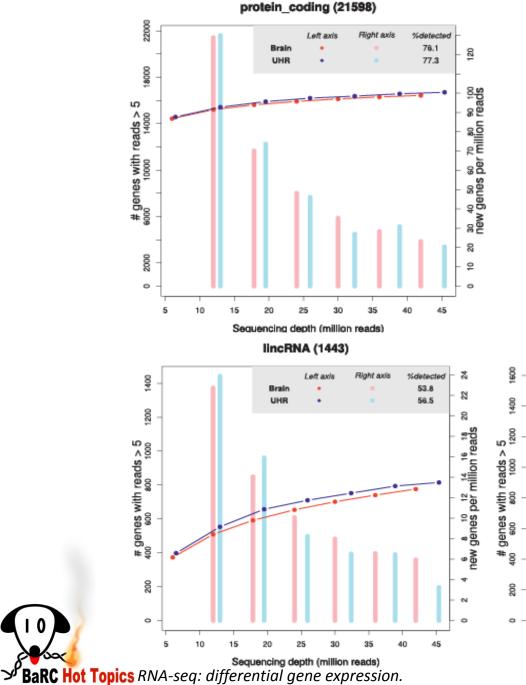
Wang, Z. et al. RNA-Seq: a revolutionary tool for transcriptomics Nature Reviews Genetics (2009)

Nature Reviews | Genetics

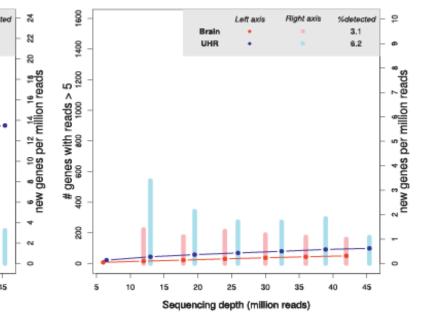
Overview of the RNA-seq analysis pipeline for detecting differential expression

Oshlack et al., From RNA-seq reads to differential expression results, Genome Biology 2010.

BaRC Hot Topics RNA-seq: differential gene expression.


Steps involved on RNA-seq analysis for detecting differential expression

- Experimental design
- Preprocess
 - Split by barcodes
 - Quality control and removal of poor-quality reads
 - Remove adapters and linkers
- Map the reads
- Count how many reads fall within each feature of interest (gene, transcript, exon etc).
- Remove absent genes
- Add offset (such as 1)
 - Prevent dividing by 0
 - Moderate fold change of low-count genes
- Identify differentially expressed genes.


Experimental design

- Include replicas in your experiment.!!!!!! Conclusions drawn from a single RNA-seq experiment can be very misleading.
- Number of reads needed for an experiment.
 Depends on the organism and the level of the differences you want to detect.
 - Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens. Wang et al. BMC Bioinformatics 2011, 12(Suppl 10):S5 <u>http://www.biomedcentral.com/1471-</u> 2105/12/S10/S5
 - *Differential expression in RNA-seq: A matter of depth. Genome Res. 2011.* PMID: 21903743.

Number of reads needed for an experiment

Differential expression in RNAseq: A matter of depth. Genome Res. 2011. PMID: 21903743.

snoRNA (1596)

Preprocess

• Useful tools for preprocessing

Fastx Toolkit : http://hannonlab.cshl.edu/fastx_toolkit

FastQC: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

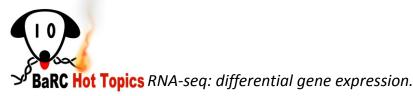
1. Split by barcodes

- If the barcode is still on the sequence use "fastx_barcode_splitter.pl"
- cat sequence.txt | fastx_barcode_splitter.pl --bcfile mybarcodes.txt --bol mismatches 2
- --bcfile: File containing the barcodes
- --bol: beginning of the sequence
- If the facility has removed the barcode and added to the header or the sequence like @HWI-ST333_0165_FC:4:1101:1494:2176#ACCTGAAT/1 ATACATTGTTTCCTTTTTAGAAATATTCTGTTACTATTAT use "splitReadsByBarcodesInDescriptionLines.pl" script in /nfs/BaRC_Public/BaRC_code/Perl

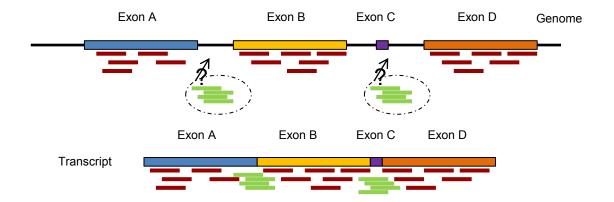
splitReadsByBarcodesInDescriptionLines.pl sequence.txt Barcodes.txt splittedSeq

Preprocess

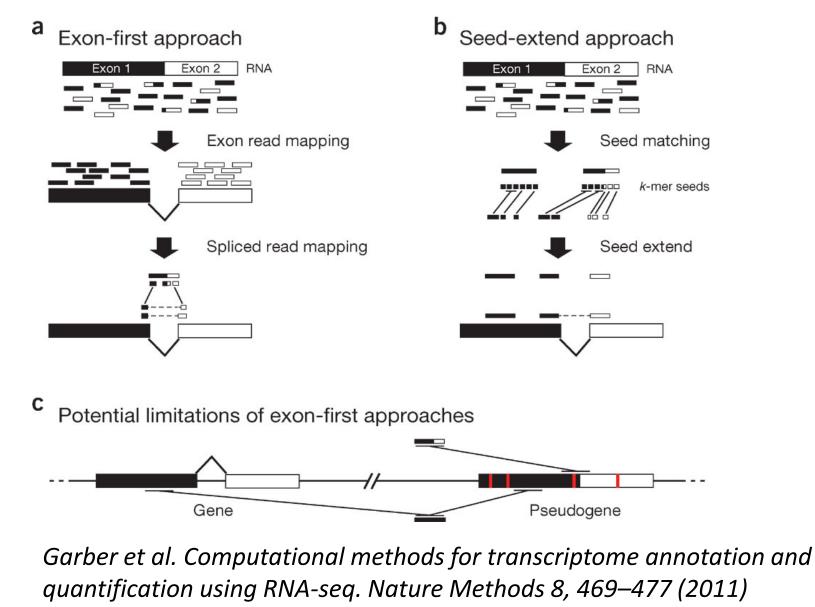
2. Quality control and removal of poor-quality reads


(http://iona.wi.mit.edu/bio/education/hot_topics/QC_HTP/QC_HTP.pdf)

fastqc s_1_seq.txt s_2_seq.txt


fastq_quality_filter -q 20 -p 80 -i s_1_seq.txt -o
s_1_seq.fastx_trim

- -q = Minimum quality score to keep
- -p = Minimum percent of bases that must have [-q] quality
- 3. Remove adapters and linkers


fastx_clipper -a GATCGGAAGAGCACACGTCTGAACTCCAGTCAC -i
s_1_seq.fastx_trim -1 22 -o s_1_seq.fastx_trim_clippedAdap

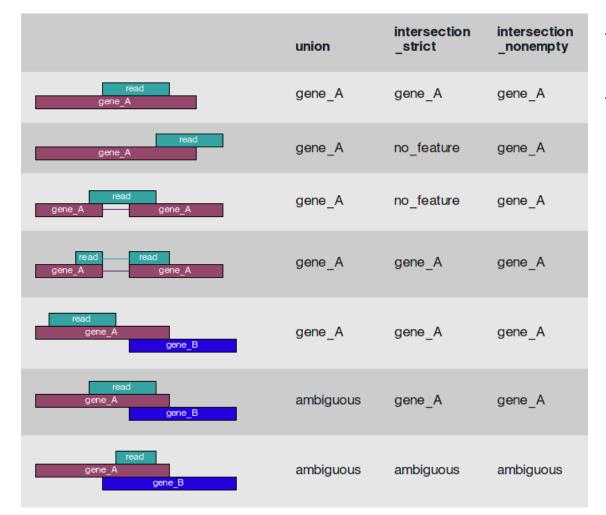
Map the reads to the genome

Map the reads to the genome

Section 24 BaRC Hot Topics RNA-seq: differential gene expression.

Map the reads to the genome

- Tophat (http://tophat.cbcb.umd.edu/)
 - include gff file that will be used in the counting
 - allow mapping to several places, the redundancy can be removed later.
- Sample commands:
 - 1. Run tophat


```
tophat -G
/nfs/genomes/human_gp_feb_09/gtf/hg19.refgene.gtf -o
OutputName --solexa-quals
/nfs/genomes/human_gp_feb_09_no_random/bowtie/hg19
seq.fastq
```

2. Convert BAM to SAM output (since SAM is required for htseq-count).

samtools view -h -o accepted_hits.sam accepted_hits.bam

Count reads with Htseq-count Htseq-count

(http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

✓ Options

Quantifying genes
 versus quantifying
 transcripts

Count reads with Htseq-count

(http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

htseq-count is run for each sample :

```
bsub "htseq-count -m intersection-strict -s no
UHR1 accepted hits.sam
/nfs/genomes/human_gp_feb_09/gtf/hg19.refgene.gtf >brain1_htseq-
count.out "
```

-s: whether the data is from a strand-specific assay (default: yes)

-m: mode to handle reads overlapping more than one feature (default: union)

head UHR1_htseq-count.out

```
67
A1BG
A1CF
         31
A2BP1
         3
head UHR2 htseq-count.out
         67
A1BG
         39
A1CF
A2BP1
         1
and then counts are combined (it can also be done with excel):
paste UHR1 htseq-count.out UHR2 htseq-count.out brain1 htseq-
count.out brain2 htseq-count.out | awk -F "\t" '{print
$1"\t"$2"\t"$4"\t"$6"\t"$8 }' > All htseqCounts.txt
```

A1BG	67	67	20	53
A1CF	31	39	0	0
A2BP1	3	1	542	532

Remove absent genes, add 1 pseudocount

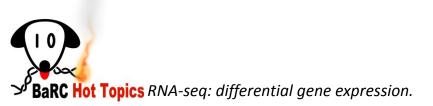
- Remove absent genes (zero counts in all samples). It reduces the number of tests and the false discovery rate correction.
- Add 1 pseudocount (prevent dividing by 0).
- Remove the rows at the bottom with descriptions like no_feature, ambiguous, etc.

awk -F "\t" '{if (\$2>0 || \$3>0 || \$4>0 || \$5>0) print \$1"\t"\$2+1"\t"\$3+1"\t"\$4+1"\t"\$5+1 }' All_htseqCounts.txt |

```
grep -v no_feature | grep -v ambiguous | grep -v
too_low_aQual | grep -v not_aligned | grep -v
alignment_not_unique > All_Counts_nozero_1pseudocount.txt
```

Note that these steps can be done with excel.

Jpdate: Pseudocounts can be added for display purposes or other manual processing, but a counts matrix used for statistics should NOT include pseudocounts.


Add header

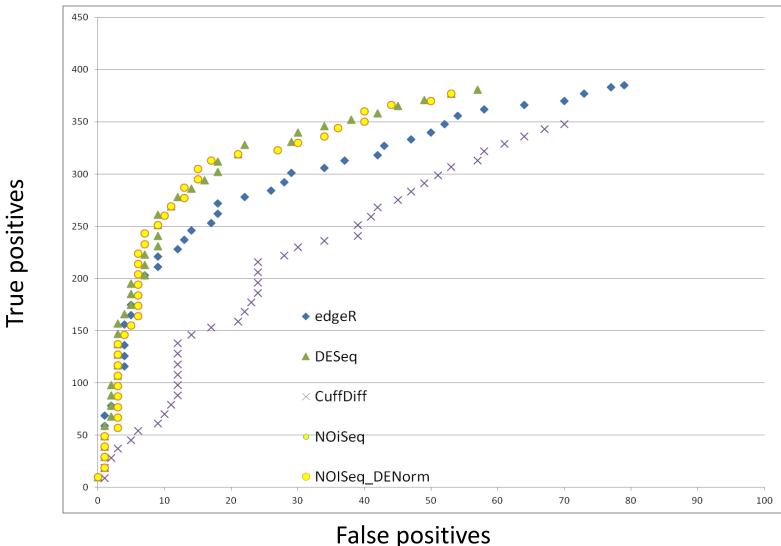
cat header.txt All_Counts_no0_1pc.txt >
 All_Counts_no0_1pc_Header.txt

head All_Counts_no0_1pc_Header.txt

ID	UHR_1	UHR_2	brain_1	brain_2
A1BG	68	68	21	53
A1CF	32	40	1	1
A2BP1	4	2	543	533
A2LD1	11	11	4	7
A2M	1772	1901	407	450

File ready to use for running software to find DE genes

Finding differentially expressed genes: Need for Normalization


- More reads mapped to a transcript if it is
 i) long
 - ii) at higher depth of coverage
- Normalize such that i) *features* of different lengths and ii) total sequence from different conditions can be compared

Finding differentially expressed genes

Method	Normalization	Needs replicas	Input	Statistics for DE	Other
EdgeR	Library size and TMM (trimmed mean of M values)	Yes	Raw counts	Empirical Bayes estimation and exact tests based on the negative binomial distribution.	PMID: 19910308
DESeq	Library size	No	Raw counts	Negative binomial distribution.	Uses different coefficients of variation for different expression strengths. PMID: 20979621
baySeq	Library size	Yes	Raw counts	Empirical Bayesian methods using the negative binomial distribution.	PMID: 20698981
NOISeq	Several options: counts per million read, RPKM, Upper Quartile.	No	Raw or normalized counts	Compares replicates within the same condition to estimate noise distribution of M (log-ratio) and D (absolute value of the difference). A feature is considered to be differentially expressed if its corresponding M and D values are likely to be higher than noise values.	PMID: 21903743
0 Di					18

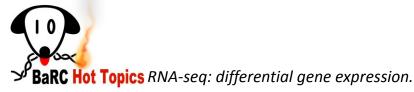
BaRC RNA-seq bakeoff

Differential expression between brain and human universal reference RNA (UHR) from the MicroArray Quality Control (MAQC) Project. (*BMC Bioinformatics. 2010 Feb 18;11:94, Nat Biotechnol. 2006 Sep;24(9):1151-61.*)

BaRC Hot Topics RNA-seq: differential gene expression.

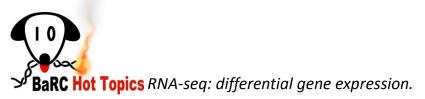
Finding differentially expressed genes with NOISeq

Sample code for running NOISeq


source("NOISeq.r")

mydata <- readData(file = "All_Counts_no0_1pc_Header.txt", cond1 = c(2:3), cond2 = c(4:5), header = TRUE)
myresults <- noiseq(mydata[[1]], mydata[[2]], repl = "bio", q = 0.9, nss = 0)
write.table(cbind (myresults\$Ms[myresults\$deg],myresults\$probab[myresults\$deg]),
 file="genesDE_FCUHRvbrain.txt", quote=F, sep="\t")</pre>

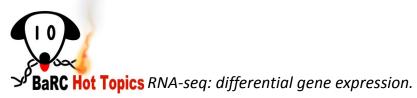
nss = 0 If the experiment didn't include replicas the number of replicates to be simulated is provided by nss parameter


repl = "bio" indicates that the experiment includes biological replicates

- **q** = **0.9** indicates that the probability cut off for considering a gene differentially expressed is 0.9
- Sample code for DESeq, EdgeR and NOISeq: \wi-files1\BaRC_Public\BaRC_code\R

References

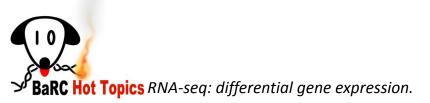
- Tophat: http://tophat.cbcb.umd.edu/
- Htseq-Count: http://wwwhuber.embl.de/users/anders/HTSeq/doc/count.html
- EdgeR: PMID: 19910308 http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
- DESeq: PMID: 20979621 http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
- baySeq: PMID: 20698981 http://www.bioconductor.org/packages/release/bioc/html/baySeq.html
- NOISeq: PMID: 21903743 http://bioinfo.cipf.es/noiseq/doku.php?id=tutorial
- *From RNA-seq to differential expression results*. Oshlack A et al. Genome Biol. (2010). PMID: 21176179.



Resources

- BaRC Standard Operating Procedures (SOPs) https://gir.wi.mit.edu/trac/wiki/barc/SOPs https://gir.wi.mit.edu/trac/wiki/barc/SOPs/rna-seq-diff-expressions
- BaRC R scripts
 \wi-files1\BaRC_Public\BaRC_code\R
- BaRC Hot Topic: Assessing Sequence and Microarray Data Quality http://jura.wi.mit.edu/bio/education/hot_topics/QC_HTP/QC_HTP.pdf
- BaRC Short Course: Introduction to Bioconductor microarray and RNA-Seq analysis

http://jura.wi.mit.edu/bio/education/R2011/slides/Intro_to_Bioconductor_HotTo pics_Oct_2011.color.pdf


 BaRC Hot Topic: RNA-Seq: Methods and Applications http://jura.wi.mit.edu/bio/education/hot_topics/RNAseq/RNA_Seq.pdf

Contact BaRC for help

• Please stop by with questions or if you would like to analyze your own RNA-seq data

wibr-bioinformatics@wi.mit.edu

