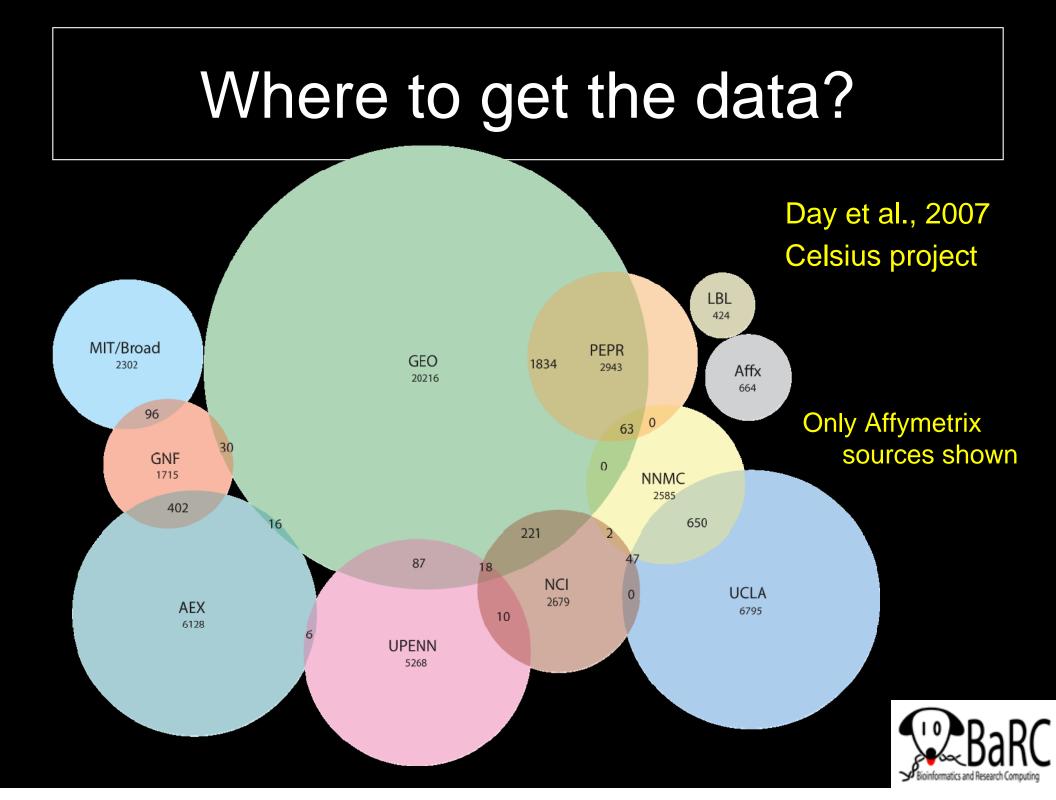
Clustering and displaying microarray data

George Bell, Ph.D. Bioinformatics and Research Computing

Hot Topics – March 2008

Why?


- Explore a large amount of expression or other data
- Get experiment-wide look at interesting subset of data
- Visually identify patterns for further analysis
- Order genes and/or experiments in a sensible way
- Split genes and/or experiments into a predefined number of groups

Why not?

- Clustering is not a substitute for rigorous statistics
- Clustering cannot identify
 - differentially expressed genes
 - profiles that are correlated with a reference profile
- Any data even noise can be clustered
- Clustering is not an essential step for most analyses

Types of data

- Single-color arrays (mainly Affymetrix)
 - Data reported as expression values
 - Raw values or log2-transformed values (RMA; GCRMA)
- Two-color arrays
 - Data reported as expression ratios
 - Raw ratios or log2-transformed ratios

Clustering with Cluster 3.0

- Based on original clustering program by Michael Eisen
- Code updated by Michiel de Hoon
- Runs on Windows, Mac, and Linux
- Free from

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm

- Hierarchical, k-means, SOMs
- Other option for large datasets:
 - XCluster, a command-line tool by Gavin Sherlock

Getting Cluster 3.0

🕹 Open source Clustering software - Mozilla Firefox		📓 Gene Cluster 3.0		
<u>File Edit Vi</u> ew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		File Help		
<	Q,	File loaded		
(FOR WIN, MAC AND LINUX)	<u> </u>			
Cluster 3.0 is an enhanced version of Cluster, which was originally developed by Michael Eisen while at Stanford University. Cluster 3.0 was built for the Microsoft Windows platform, and later ported to Mac OS X (Cocoa build for Mac OS X v10.0 or later) and to Linux/Unix		Job name		
using Motif. In addition to the GUI program, Cluster 3.0 can also be run as a command line program. For more information, please consult the online manual.		Data set has	Rows Columns	
Installation: For Microsoft Windows and Mac OS X, use the appropriate installer. The Cluster 3.0 executables cluster.com (on Windows) or cluster (on Mac OS X) can be used both as a GUI		Filter Data Adjust Data	Hierarchical k-Means SOMs PCA	1
program and as a command line program. For Cluster 3.0 on Linux/Unix, you will need the Motif libraries, which are already installed on		Genes	Arrays	
many Linux/Unix computers. You will need a version compliant with Motif 2.1, such as OpenMotif. Cluster 3.0 can then be installed by typing ./configure		Cluster	Cluster	
make make install The resulting eventable is a car be run on a Clillere grane and as a corresponding	=	, weights	^{/ _} weights	
The resulting executable cluster can be run as a GUI program and as a command line program. For the latter, you will need to use the appropriate command line options. If you are not interested in the GUI, and you want to run Cluster 3.0 as a command line program only, you can install a command-line only version of Cluster by typing		Similarity M		
make install		Clustering method		
If you install Cluster 3.0 as a command-line only program you do not need the Motif libraries. Download (<i>last update March 8, 2008; C Clustering Library version 1.38</i>): Installer for Microsoft Windows;		Centroid linkage	Single linkage Complete linkage Aver	age linkage
Installer for Mac OS X (Universal binary for PowerPC and Intel processors) (you may need to remove /Library/Receipts/Cluster.pkg if you have an older version of Cluster 3.0 installed); Linux/Unix source code;				
manual in PDF format.				

Cluster data import

• Minimal matrix (text, not Excel format)

Probe	Amygdala	Heart	Kidney	Liver	Lung
1000_at	0.85	0.19	-0.92	-0.32	-0.27
1009_at	0.02	0.44	0.32	0.53	-0.80
1014_at	-0.25	0.17	-5.83	-5.83	0.93
1030_s_at	-0.25		0.13	-2.09	0.21
1031_at	-0.35	-0.19	-0.22	-5.00	

• Matrix with annotation and cluster weights

GenelD	NAME	GWEIGHT	Amygdala	Heart	Kidney	Liver	Lung
EWEIGHT			0	0	1	1	1
1000_at	MAPK3	1	0.85	0.19	-0.92	-0.32	-0.27
1009_at	HINT1	1	0.02	0.44	0.32	0.53	-0.80
1014_at	POLG	1	-0.25	0.17	-5.83	-5.83	0.93
1030_s_at	TOP1	0	-0.25		0.13	-2.09	21
1031_at	SRPK1	0	-0.35	-0.19	-0.22	-5.00	\' / R 2

Data filtering

- Why filter?
 - Noise (unexpressed or uninteresting genes) can hide signal
 - A complete dataset is too much to visually process
- What are you looking for?
 - Differentially expressed genes
 - Most variable genes
 - Most interesting profile (expression pattern)
- Select list of genes of interest
- Select set of genes with GO annotation of interest
- Do in spreadsheet or Cluster ("Filter Data" tab)

Filter Data Adjust Data Hierarchical k-Means SDMs PCA
Filter Genes
□ % Present >= 80
SD (Gene Vector) 2.0
At least observations with abs[Val] >= 2.0
MaxVal - MinVal >= 2.0
Apply Filter
Accept Filter

Transforming data

- Do in spreadsheet or Cluster ("Adjust Data" tab)
- Common methods
 - Log-transformation
 - Converting values into ratios
 - Centering:
 - value mean (row or column)
 - value median (row or column)
 - Many normalization methods (from elsewhere)

Filter Dat	a Adjust Data Hierarchical k-Mea	ins SOMs PCA							
⊢ Ad	ljust Data								
	L an hansform data								
	Log transform data								
	F a .								
	Center genes	Center arrays							
	💿 Mean	🐼 Mean							
	C Median	C Median							
	Normalize genes	Normalize arrays							
		1							
0	Order of Operations:								
	.og Transform								
	Center Genes Normalize Genes								
	Center Arrays Apply								
P.	tomaize Anays								

Clustering goals and caveats

- Potential goal: organize a set of data to show relationships between data elements
- With microarray analysis: genes and/or chips
- Most data does not inherently exist in clusters
- Most effective with optimal quantity of data
- Interpretation of data in obvious clusters: is it filtered?
- Clustering vs segmenting

Hierarchical clustering

- Agglomerative, unsupervised analysis
- Steps
 - 1. Create an all vs. all distance matrix
 - 2. Fuse closest objects
 - 3. Compare fused object to all others
 - 4. Repeat steps 2-3 until one inclusive cluster is created
- Can be performed on genes and/or arrays
- Efficiency = $O(n^2m)$
- Need to select:
 - Similarity Metric
 - Clustering method

Filter Data Adjust Data Hierarchical k-M	1eans SOMs PCA
Genes	Arrays
Cluster	Cluster
⊏ Calculate weights	Calculate weights
Similarity Metric Correlation (uncentered)	Similarity Metric Correlation (uncentered)
Clustering method	Correlation (uncentered) Correlation (centered) Absolute Correlation (uncentered) Absolute Correlation (centered) Spearman Rank Correlation
Centroid linkage Single linkage	Kendall's tau Cor Euclidean distance City-block distance
	Sicinformatics and Resear

Measuring similarity between profiles

- Similarity (distance) metric is an important choice when comparing genes and/or experiments
- What are you trying to group?

Common similarity metrics

- Pearson correlation
 - Measures the difference in the shape of two curves
 - modifications:
 - uncentered correlation: for offset profiles, coefficient < 1
 - absolute correlation: opposite profiles cluster together
- Euclidean distance: multidimensional Pythagorean Theorem
 - Measures the distance between two curves
- Nonparametric or Rank Correlation
 - Similar to the Pearson correlation but data values are replaced with their ranks
 - Ex: Spearman Rank, Kendall's Tau
 - Good idea if distribution of data is not normal
 - More robust (against outliers) than other methods

Clustering methods

How can groups of objects be represented? How is distance measured to a cluster of objects?

- Single linkage (b)
 - minimum distance
- Complete linkage (r)
 - maximum distance
- Centroid linkage (p)
 - distance to "centroid" of group
- Average linkage (x)
 - average distance

 $\mathbf{x} = \mathbf{mean} (\mathbf{b}, \mathbf{y}, \mathbf{r})$

b

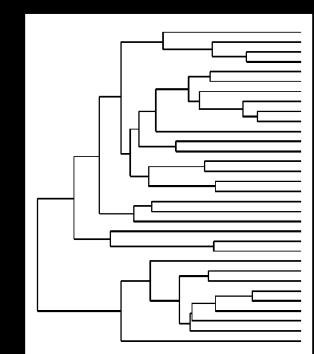
р

2

Weighting?

– GWEIGHT, EWEIGHT

Cluster data output

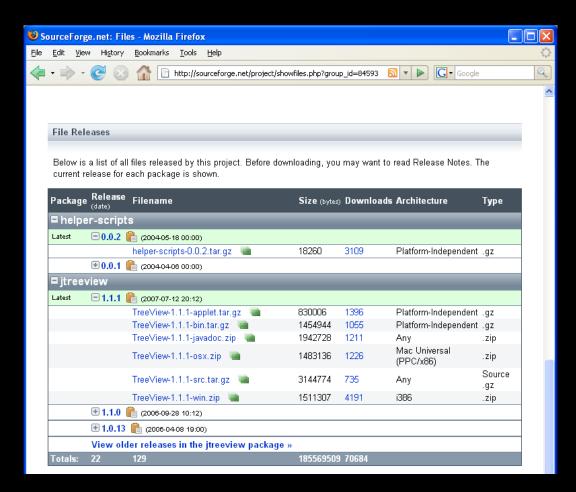

- For hierarchical clustering by genes and arrays, 3 output files are created:
 - .cdt ("clustered data table")
 - _.gtr ("gene tree")
 - .atr ("array tree")
- All are tab-delimited text and can be opened as a spreadsheet
- Create your own 'cdt' file and bypass Cluster 3.0:
 - Tab-delimited text
 - First 2 columns are gene identifiers

Gene ID	Symbol	Amygdala	Heart	Kidney	Liver	Lung
1000_at	MAPK3	0.85	0.19	-0.92	-0.32	-0.27
1009_at	HINT1	0.02	0.44	0.32	0.53	-0.80

Representation of clustered data

- Hierarchical clustering produces a dendrogram(s) showing relationships between objects
- Order of leaves: 2^{N-1} choices
- How can objects be partitioned into groups?
 - k-means clustering
 - self-organizing maps
 - How many clusters (k)?
- Are the data really hierarchical?
- Original distance matrix may be informative

Visualizing clustered data with Java TreeView


- Based on original clustering program by Michael Eisen
- Code updated by Alok Saldanha
- Runs on Windows, Mac, and Linux
- Free from

http://sourceforge.net/project/showfiles.php?group_id=84593

Getting Java TreeView

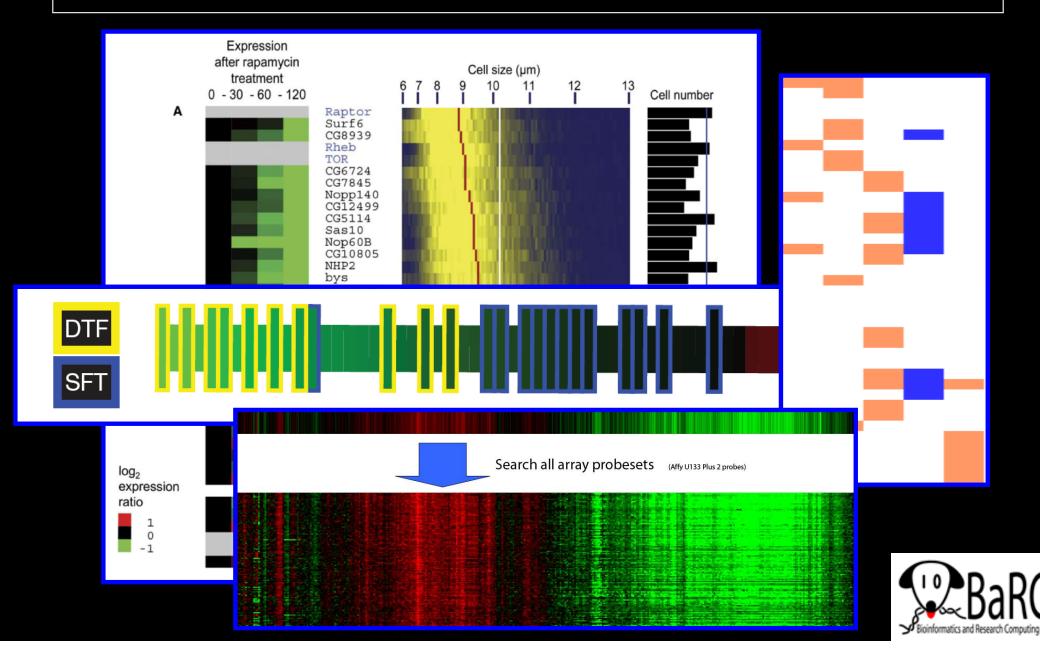
http://sourceforge.net/project/showfiles.php?group_id=84593

🕌 Ja	🛎 Java TreeView										
File	Settings	Analysis	Export	Window	Help						
		Hello How Welcom		Gentlepeo a TreeView							

Java TreeView main view

File Settings Analysis Expot Window Help Dentegram New Status Row Ed 306939_a0 Column 1 (Fela Ibrinn) Value 28119 Value 28119	Java TreeView : C:\George\BaRC_Group\Hot_topics\Clustering\Su_ratios.cdt									
Hitts Row. 8:10,0939 points Value: 2:0119 Value: 2:0119 Va										
Column 1 (Fetal brain) Value: 2 8119 Wate:	Dendrogram									
34719_at 3625_at 3555_at 35424_gat 35424_gat 35424_gat 35424_gat 35424_gat 35424_gat 3555_at 35424_gat 3555_at 35424_gat 3555_at 3544_gat 3544_gat 3552_at 3544_gat 3649_gat 3649_gat 3649_gat 3649_gat 3649_gat 3649_gat 3649_gat 3649_gat 3649_gat 3644_gat	Row: 63 (36939_at) [[[]] [] [] [] [] [] [] []	Whole blood	Isage Hints louse over 1							
1 1										
		31 36 36 38 38 39 38 39 38 40 41 37 26 38 40 40 40 40 40 40 40 40 40 40 40 40 40	7614_g_at 6285_at 650_g_at 5959_at 8855_s_at 9288_at 5424_g_at 6853_at 0401_at 1373_s_at 7868_s_at 60_at 8499_s_at 0239_g_at 0484_g_at 0484_g_at 0649_at 2076_at 0862_1_at 23_at 3404_at							
		- 39								

Java TreeView: settings


🛎 Ja	Java TreeView : C:\George\BaRC_Group\Hot_topics\Clustering\Su_ratios.cdt								
File	Settings Analysis E	xport	Window Help						
Dei	Pixel Settings	am							
View 60 ge 6 arr: Gene	Url Settings					Usage Hints use arrow keys to move selection			
6 arr:	Font Settings	ᇟ		- Andrew		pool			
Gene Array	Annotations		세 杰 시 ㅣ		🍰 Pixel Se	ettings too			
	Presets >					Х: Ү:			
Г		2			Global:	Fixed Scale 5.0 Fixed Scale 2.0			
						○ Fill ○ Fill			
						X: Y:			
					Zoom:	X: Y: © Fixed Scale 12.0 © Fixed Scale 12.0			
		1			200111.				
ļļļ		1							
		6			Contrast:	Value: 3.0			
		fř							
						Positive Zero Missing			
					Colors:	Load Save Make Preset			
		3	2 - A - A			RedGreen YellowBlue			
		14							
			8 B			Close			
ךן		ð.,							
		2							
		_	,						

omputina

Java TreeView: exporting images

🖆 Java TreeView : C:\George\BaRC_Group\Hot_top	ics\Clustering\Su_ratios.cd	lt.		
File Settings Analysis Export Window Help				
Dendrogram Dendrogram				
View Status Select Node to view annotation.		Usage Hi Click to s - use arro	ints elect node ow keys to navigate tree	
	🛓 Export to Image			
	Gene Headers	Include	Preview	
	GID Probe NAME GWEIGHT Array Headers GID AID EWEIGHT	Selection Only ✓ Gene Tree ✓ Array Tree ✓ Data Matrix x scale 12.0 y scale 12.0 Border 0.0 Use apple key to select multiple headers Total Size: 648.0 x 4361.0 (p)	Check Box to Display Preview	
	Export To:	C:\George\BaRC_Group\Hot_topics\Clustering\Su Image Format: png V Append Exter Save Cancel	_ratios.png	

Displaying other types of data

Demo?

