
Perl For Beginners

What is PERL?

§  Practical Extraction Reporting Language
§  General-purpose programming language
§  Creation of Larry Wall 1987
§  Maintained by a community of developers
§  Free/Open Source

§ www.cpan.org

Why use Perl?
§  Perl is fast, especially at common tasks in biology:

file manipulation and pattern matching
§  Good at manipulating large data sets or

performing the same task repeatedly
§  CGI module gives simple interface for delivering

dynamic web pages
§  DBI modules provide database-independent

interface for Perl
§  Powerful easy-to-use modules for network

programming (Web, E-Mail, FTP, etc.)
§  TMTOWTDI

Overview

§  Scalars, scalar variables and operations
§  Control blocks and conditions
§  Array, array variables and array operations
§  Tips and resources

The Basics

§  Text file using ordinary text editor (nedit,
emacs)

§  Comments begin with a pound-sign (#)
§  Statements end with semi-colon (;)
§  White space independent
§  Case sensitive
§  Variables need not be declared or “typed”

Scalars

§  Represent a single piece of data
§  Can represent string or numeric

§  2, 3.1456, 1e-27, “ATC”, ‘NM_000327’

§  Scalar Variables
§  Variable names consist of a dollar sign ($) followed by a letter or

underscore then followed by zero or more letters, digits or
underscores
§  $name, $old_name

§  Used to hold results of calculations, constants, input from
keyboard, files, etc
§  $acc_number = “NM_000327”;

Numeric Operators

§ Addition (+), subtraction (-),
multiplication (*), division (/),
modulus(%), exponentiation (**)
§  $a=1;
§  $b=2;
§  $c=$a + $b; # $c equals 3
§  $d=$c**2; # $d equals $c to the power of 2 which is 9
§  $e=$d%2; # $e equals the remainder of 9/2 which is 1

Numeric Comparison Operators

§  == (equality), != (inequality), >(greater
than), >=(greater than or equal to), < (less
than), <= (less than or equal to)
§  $a=1; $b=2;
§  $a==$b # false
§  $a != $b # true
§  $b >= $a # true

String Operators

§  . (concatenation), eq (equality),
ne(inequality)

§  $a = “Hello ”;
§  $b = $a . “World”; # $b equals “Hello World”
§  $a eq “Hello”; # evaluates to true
§  $a ne “World”; # also evaluates to true

Variable Interpolation

§  Variables are interpolated within double quotes
but not within single quotes

§  $a = ‘student’;
§  “hello $a”; # evaluates to “hello student”
§  ‘hello $a’; # evaluates to “hello $a”
§  New lines (\n), tabs (\t) and other special

characters interpolated within double quotes
§  print “hello\tstudent\twelcome\tto\Boston\n”;
§  prints tabs between each word and a trailing new line

Statements Blocks

§  Curly Braces surrounding multiple statements
§  # this is a naked block
§  {

§  Statement 1;
§  Statement 2;

§  }
§  Naked block has no effect on program flow
§  Blocks are typically part of a larger construct
§  Types: while, for, foreach, if/else

if/elsif/else if (test_expression)
{
Statement 1;
Statement 2;
}
elsif (test_expression2)
{

Statement 3;
}
else
{

Statement 4;
}

§  Statement 1 and 2 are executed if test_expression is true, Statement 3
is excuted if test_expression2 is true, otherwise statement 4 is executed

More on if/else

§  Braces are required (unlike other languages)
§  else is optional
§  “unless” can be used instead of “if” which

reverses the test
§  If more than two conditions exist use “elsif”

Arrays

§  List of scalars
§  Can store heterogeneous information
§  No space allocation. Expands as necessary
§  Ordered sequentially and indexed (start at 0)
§  Variable names start with @

§ @bases = (“A”,”T”,”G”,”C”);
§  0 1 2 3 # index

Array Assignments

@a = (7.34,“coffee”, “tea”, 343);
§  qw - use white space to separate elements

§  @a = qw (7.34 coffee tea 343);
§  Can be made up of scalar and array variables

§  @bases=qw(A T G C);
§  $a = “N”;
§  @legal_bases = (@bases, $a, “X”) # ATGCNX

Accessing Array Elements

§  An array element can be retrieved by accessing its index
§  @bases = qw (A C T G);

§  $third_base = $bases[2]; # $third_base equals T

§  Elements can also be modified this way
§  $bases[3]=‘X’; # @bases now (A C T X)

§  Negative subscripts count backward
§  $bases[-1]; #refers to last element X

§  @bases and $bases are completely different

Filehandles
§  To read from or write to a file in Perl, it first needs to be opened. In

general, open (filehandle, filename);
§  Filehandles can serve at least three purposes:
§  open (IN, $file); # Open for input
§  open (OUT, “>$file”); # Open for output
§  open (OUT, “>>$file”); #Open for appending
§  Then, get data all at once @lines =<IN>;
§  Or one line at a time
§  while (<IN>){

§  $line = $_ # do stuff with this line
§  Print OUT “This line: $line”;

Perl Functions
§  Functions for scalars or strings

§  chomp, chop, chr, crypt, hex, index, lc, lcfirst, length, oct, ord, pack, q/
STRING/, qq/STRING/, reverse, rindex, sprintf, substr, tr///, uc, ucfirst,
y///

§  Regular expressions and pattern matching
§  m//, pos, quotemeta, s///, split, study, qr//

§  Numeric functions
§  abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

§  Functions for real @ARRAYs
§  pop, push, shift, splice, unshift

§  Functions for list data
§  grep, join, map, qw/STRING/, reverse, sort, unpack

§  Input and output functions
§  binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock,

format, getc, print, printf, read, readdir, rewinddir, seek, seekdir, select,
syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn, write

Chop and Chomp

Chop
§  Removes the last

character of a string

§  $a = “testing 123”;
§  chop $a;
§  # $a now equals
“testing 12”

§  Chomp
§  Removes the last character

of a string only if it is a
newline (/n)

§  $b = “this is a test\n”;
§  chomp $b;
§  # $b now equals “this is a

test”

Pop and Push

Pop
§  Removes and returns the

last value of the array

§  @bases = qw(A C T G);
§  $z = pop @bases;

§  #$z is G and @bases is (A
C T)

Push
§  Adds elements to the

end of the array

§  @a = (4, 5, 6, 7);
§  push @a, 8;

§  #@a is now (4, 5, 6, 7,
8)

Shift and Unshift

Shift
§  Removes and returns the

first element off the array

§  @n = (9,8,7,6);
§  $a = shift @n;

§  # $a equals 9, @n =
(8,7,6);

§  Unshift
§  Adds elements to the

beginning of an array

§  @y = (25, 26, 27);
§  Unshift @y, 24;

§  # @y becomes (24,
25, 26, 27)

Resources

§  http://learn.perl.org/
§  http://www.oreilly.com/
§  BaRC Library
§  Unix-Perl course Spring 2005

http://jura.wi.mit.edu/bio/education/
bioinfo2005/unix-perl/

§  Perl Library http://iona.wi.mit.edu/bio/
bioinfo/scripts/

