Bioinformatics for Biologists

Microarray Data Analysis. Lecture 1.

Fran Lewitter, Ph.D.
Director
Bioinformatics and Research Computing
Whitehead Institute
Outline

• Introduction
• Working with microarray data
 – Normalization
 – Analysis
 • Distance metrics
 • Clustering methods
Research Trends

- How are genes regulated?
- How do genes interact?
- What are the functional roles of different genes?
- How does expression level of a gene differ in different tissues?

Genomics

Sequence

Function
Transcriptional Profiling
(Adapted from Quackenbush 2001)

• Study of patterns of gene expression across many experiments that survey a wide array of cellular responses, phenotypes and conditions

• Simple analysis - what’s up/down regulated?

• More interesting - identify patterns of expression for insight into function, etc.
Microarray Data

Collect data on n DNA samples (e.g. *rows*, genes, promoters, exons, etc.) for p mRNA samples of tissues or experimental conditions (e.g. *columns*, time course, pathogen exposure, mating type, etc)

Matrix ($n \times p$) =

$$
\begin{array}{cccc}
 x_{11} & x_{12} & \cdots & x_{1p} \\
 x_{21} & x_{22} & \cdots & x_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{np} \\
\end{array}
$$
Multivariate Analysis

Concerned with datasets with more than one response variable for each observational or experimental unit (e.g. matrix X with n rows (genes) and p columns (tissue types))

- Hierarchical (phylogenetic trees) vs non-hierarchical (k-means)
- Divisive vs agglomerative
- Supervised vs unsupervised
 - Divide cases into groups vs discover structure of data
Multivariate Methods

- Cluster analysis - discover groupings among cases of X
 - Hierarchical produces dendograms
 - K-means - choose a prespecified number of clusters
 - Self Organizing Maps

- Principal component analysis (PCA)
 - Linear method, unsupervised, seeks linear combinations of the columns of X with maximal (or minimal) variance (graphical)
DNA Microarrays

Build the chip

Prepare RNA

Hybridize array

Collect results

Normalize

Analyze
Data Normalization

- Correct for systematic bias in data
 - Avoid it, recognize it, correct it, discard outliers
- First step for comparing data from one array to another
Sources of variation

wanted vs unwanted

Across experimental conditions

Chip, slide
Hybridization conditions
Imaging
Normalization Approaches

Compensate for experimental variability

- Housekeeping genes
- Spiked in controls
- Global median normalization
- Total intensity normalization
- LOWESS correction
Expression Ratios

- Let R = a query sample
- Let G = a reference sample
- Then the ratio, $T_i = R_i/G_i$
- Need to transform these to \log_2
- Examples: $T = 2/1 = 2$; $T=1/2 = .5$
- Examples: $\log_2(2) = 1$; $\log_2(.5) = -1$
Total Intensity Normalization

(Adapted from Quackenbush 2002)

Assumptions: (1) start with equal amounts of RNA for the two samples; (2) arrayed elements represent random sample of genes in the organism

a. \[N_{total} = \frac{\sum_{i=1}^{\text{Array}} R_i}{\sum_{i=1}^{\text{Array}} G_i} \]

c. \[T_i' = \frac{R_i'}{G_i'} = \frac{1}{N_{total}} \cdot \frac{R_i}{G_i} \]

b. Rescale intensities:
\[G_i' = N_{total} G_i \quad \text{and} \quad R_i' = R_i \]

d. \[\log_2(T_i') = \log_2(T_i) - \log_2(N_{total}) \]
LOWESS - The R-I Plot
(Adapted from Quackenbush 2002)

- Data exhibit an intensity-dependent structure
- Uncertainty in intensity and ratio measurements is greater at lower intensities
LOWESS - The R-I Plot
(Adapted from Quackenbush 2002)

- Plot \(\log_2(R/G) \) ratio as a function of \(\log_{10}(R*G) \) product intensity
- Shows intensity specific artifacts in the measurements of ratios
- Correct using a local weighted linear regression
LOWESS Normalization
(From Quackenbush 2002)

If we set $x_i = \log_{10}(R_i \cdot G_i)$ and $y_i = \log_2(R_i/G_i)$, lowess first estimates $y(x_k)$, the dependence of the log$_2$(ratio) on the log$_{10}$(intensity), and then uses this function, point by point, to correct the measured log$_2$(ratio) values so that

$$\log_2(T'_i) = \log_2(T_i) - y(x_i) = \log_2(T_i) - \log_2(2^{y(x_i)})$$

or equivalently,

$$\log_2(T'_i) = \log_2\left(T_i \star \frac{1}{2^{y(x_i)}}\right) = \log_2\left(\frac{R_i}{G_i} \star \frac{1}{2^{y(x_i)}}\right).$$

As with the other normalization methods, we can make this equation equivalent to a transformation on the intensities, where

$G'_i = G_i \star 2^{y(x_i)}$ and $R'_i = R_i$.
After normalization

(Adapted from Quackenbush 2001)

- Data reported as an “expression ratio” or as a logarithm of the expression ratio

- Expression ratio is the normalized value of the expression level for a particular gene in the query sample divided by its normalized value for the control

- Use log of expression ratio for easier comparisons
Citations

Lists of Tools

• Local WI Page
 – WADE

• R Statistics Package Microarray Tools
 – http://www.stat.uni-muenchen.de/~strimmer/rexpess.html

• Bioconductor Project
 – http://www.bioconductor.org/

• EBI
 – http://ep.ebi.ac.uk/Links.html
 – http://ep.ebi.ac.uk/EP/
Exercise 1
Excel Conventions

• A2 cell reference
• A2:A100 series of cells
• =B5 formula
• =B5 absolute link
• =data!B4 reference other sheet
• =@[otherFile.xls]data!B4 reference other file
Exercise 1

Functions

- MEDIAN
- SUM
- AVERAGE
- IF
- TTEST
- VLOOKUP
Exercise 1

To Do

Affy - fetal & human adult liver & brain tissue

- Normalize data - 8 chips (replicates)
 - Global median normalization
 - (expression signal/chip median value)*100

- Filter low intensity signals
 - Based on A/P
 - Eliminate signal similar to background

- Calculate ratios
 - Reduce data (replicates)
 - Use AVERAGE function
 - Ratio of fetal tissue/adult tissue
 - \(\log_2 \)