Unix, Perl and BioPerl

I: Introduction to Unix for Bioinformatics

George Bell, Ph.D.
WIBR Biocomputing Group
Introduction to Unix for Bioinformatics

• Why Unix?
• The Unix operating system
• Files and directories
• Ten required commands
• Input/output and command pipelines
• Supplementary information
 – X windows
 – EMBOSS
 – Shell scripts
Objectives

• Get around on a Unix computer

• Run bioinformatics programs “from the command line”

• Design potential ways to streamline data manipulation and analysis with scripts
Why Unix (for me)?

- **GEISHA**, the *Gallus gallus* (chicken) EST and in situ hybridization (ISH) database
Why Unix (in general)?

- Features: multiuser, multitasking, network-ready, robust
- Others use it – and you can benefit from them (open source projects, etc.)
- Good programming and I/O tools
- Scripts can be easily re-run
- Types: Linux, Solaris, Darwin, etc.
- Can be very inexpensive
Why Unix for Bioinformatics?

• Good for manipulating lots of data
• Many key tools written for Unix
• Don’t need to re-invent the wheel
• Unix-only packages: EMBOSS, BioPerl
• Unix tools with other OSs: Mac (OS X) & PC (Cygwin)
Unix O.S.

- **kernel**
 - managing work, memory, data, permissions

- **shell:**
 - working environment and command interpreter
 - link between kernel and user
 - choices: tcsh, etc.
 - History, filename completion [tab], wildcard (*)
 - Shell scripts to combine commands

- **filesystem**
 - ordinary files, directories, special files, pipes
WIBR BaRC systems

Training

hebrides
(Solaris; 4 CPUs)
with storage and filesystem
/home/username

Research

storage and filesystem:
/home/username

barra (Linux; 4 CPUs)

Linux cluster: ~14 x 2 CPUs
Logging in

• ssh (secure shell; for encrypted data flow)
 `ssh -l user_name hebrides.wi.mit.edu`

• passwd: to change your passwd

• logging out
 `logout`
Intro to files and directories

- Arranged in a branching tree
- Root of tree at “/” directory
- User elvis lives at /home/elvis (on ‘hebrides’)
- No spaces allowed
- Full vs. relative pathnames
 - At his home, Elvis’ home dir is “.”
 - To get to /home/gidget, go up and back down: (../gidget relative to /home/elvis)
- Anywhere, your home directory is “~”.
Intro to Unix commands

• Basic form is
 command_name options argument(s)
examples:
 mv old_data new_data
 blastall -p blastn -i myFile.seq -e 0.05
 -d nt -T T -o myFile.out

• Use history (↑, ↓, !num) to re-use commands
• Cursor commands: ^A(beginning) and ^E (end)
• To get a blank screen: clear
• For info about a command: man command
Key commands p. 1

• Where am I?

 `elvis@hebrides[1] % pwd`

 `/home/elvis`

• What’s here?

 `elvis@hebrides [2] % ls`

 `A01.tfa`

 `elvis@hebrides [3] % ls -a`

 `.` \ `.cshrc` \ `A01.tfa`

 `.. \ `.twmrc`
Key commands p. 2

• Change directories:
 cd ..:/gidget
 /home/gidget

• Make a new directory:
 mkdir spleen

• Remove a directory (needs to be empty first):
 rmdir spleen
File permissions

• Who should be reading, writing, and executing files?
• Three types of people: user (u), group (g), others (o)
• 9 choices (rwx or each type of person; default = 644)
 0 = no permission 4 = read only
 1 = execute only 5 = r + x
 2 = write only 6 = r + w
 3 = x + w 7 = r + w + x

• Setting permissions with chmod:

 chmod 744 myFile or chmod u+x myFile
 -rwxr--r-- 1 elvis musicians 110 Jun 19 10:45 myFile
 chmod 600 myFile
 -rw------- 1 elvis musicians 110 Jun 19 10:45 myFile
Key commands p.3

• Copying a file:
cp [OPTION]... SOURCE DEST
Ex: cp mySeq seqs/mySeq
• Moving or renaming a file:
mv [OPTION]... SOURCE DEST
Ex: mv mySeq seqs/mySeq
• Looking at a file (one screenful) with ‘more’
Ex: more mySeq
(Spacebar a screenful forward,
<enter> a line forward; ^B a screenful back; q to exit)
Key commands (summary)

ssh mkdir cp
pwd mvdir mv
ls chmod more
cd

To get more info (syntax, options, etc.):
man command
Input/output redirection

- Defaults: stdin = keyboard; stdout = screen
- To modify,
 \texttt{command < inputFile > outputFile}
- Input examples
 \texttt{sort < my_gene_list}
- Output examples
 \texttt{ls > file_name} (make new file)
 \texttt{ls >> file_name} (append to file)
 \texttt{ls foo >& file_name} (stderr too)
Pipes (command pipelines)

• In a pipeline of commands, the output of one command is used as input for the next

• Link commands with the “pipe” symbol: |
 ex1: ls *.fa | wc -l
 ex2: grep `^>’ *.fa | sort
Managing jobs and processes

• Run a process in the foreground (fg):
 `command`

• Run a process in the background (bg):
 `command &`

• Change a process (fg to bg):
 1. suspend the process:
 ^Z
 2. change to background:
 bg
Managing jobs and processes (cont.)

- See what’s running (ps)

```
elvis@hebrides[1] % ps -u user_name

    PID   TTY      TIME   CMD
  22541  pts/22   0:00   perl
  22060  pts/22   0:00   tcsh
```

- Stop a process:

```
kill PID

ex: kill 22541
```
Text editors

- emacs, vi (powerful but unfriendly at first); pico
- nedit, xemacs (easier; X windows only)
- desktop text editors (BBEdit; TextPad) + sftp
Supplementary information
X Windows

- method for running Unix graphical applications
- still allows for command-line operation
- see help pages for getting started
- some applications with extensive graphics:
 - EMBOSS
 - R
 - Matlab
 - ClustalX + TreeView
- Requires a fast network/internet connection
EMBOSS

• The European Molecular Biology Open Software Suite
• List of programs at http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/
• ex: Smith-Waterman local alignment (water)
• Programs have two formats: interactive and one-line
• Conducive to embedding in scripts for batch analysis
• Traditionally command-line but web interfaces are becoming available
EMBOSS examples

• needle: Needleman-Wunsch global alignment
 needle seq1.fa seq2.fa -auto
 -outfile seq1.seq2.needle

• dreg: regular expression search of a nucleotide sequence
 dreg -sequence mySeq.tfa -pattern
 GGAT[TC]TAA -outfile mySeq_dreg.txt
Shell script example

#!/bin/csh
alignSeqs.csh: align a pair of sequences

Check to make sure you get two arguments (sequence files)
if ($#argv != 2) then
 echo "Usage: $0 seq1 seq2"; exit 1
endif

Local alignment
set localOut=$1.$2.water.out
water $1 $2 -auto -outfile $localOut
echo Wrote local alignment to $localOut

Global alignment
set globalOut=$1.$2.needle.out
needle $1 $2 -auto -outfile $globalOut
echo Wrote global alignment to $globalOut
Some other helpful commands

- `rm`: remove (delete) files
 - `rm myOldfile`
- `cat`: concatenate files
 - `cat *.seq > all_seq.tfa`
- `alias`: create your own command shortcuts
 - `alias myblastx blastall -p blastx -d nr`
- `find`: find a lost file (ex: look for files with the .fa extension)
 - `find . -name \/*.fa`
- `diff; comm`: compare files or lists
- `sort`: sort (alphabetically/numerically) lines in a file
- `uniq`: get list of non-redundant lines
- `grep`: search a file for a text pattern
- `tar`: combine files together for storage or transfer
- `sftp`: transfer files between machines
- `gzip & gunzip`: compress or uncompress a file
Summary

• Why Unix?
• The Unix operating system
• Files and directories
• Ten required commands
• Input/output and command pipelines
• X windows, EMBOSS, and shell scripts
Exercises

• compress, move, and uncompress sequence files
• make a multiple sequence file
• create a BLAST database
• run BLAST on your database
• extract a sequence from the database