Assessing Sequence and Microarray Data Quality: Commands
(Based on BaRC SOP)

Microarray Data: Example of commands using the packages simpleaffy and arrayQualityMetrics from BioConductor

library("simpleaffy")
library("affyPLM") # for NUSE
Read cel files from directory
data = ReadAffy()
Create affy QA matrix
data.qc = qc(data)
percent present
pp = percent.present(data.qc)
RLE and NUSE
plmStruc = fitPLM(data)
RLE(plmStruct, type="stats")
NUSE(plmStruct, type="stats")

#arrayQualityMetrics (Affy data)
library(arrayQualityMetrics)
CEls = ReadAffy()
eset = rma(CEls)
arrayQualityMetrics(eset, outdir="QC", force=TRUE)

#arrayQualityMetrics (Agilent Data)
library(arrayQualityMetrics)
scanFiles = dir(pattern = ".*.txt$")
maData = read.maimages(scanFiles, source="agilent")
arrayQualityMetrics(expressionset=maData, outdir="QC", force = TRUE, do.logtransform = TRUE)

Sequence Data: Example of commands using FastX and FastQC

#FastQC
fastqc s_1_sequence.txt s_2_sequence.txt

#FastX Toolkit
quality_stats
fastx_quality_stats -i s_1_1_sequence.txt -o s_1_1_sequence.stats
Nucleotide Distribution:
fastx_nucleotide_distribution_graph.sh -i s_1_1_sequence.stats -o s_1_1_sequence.stats.nuc.png -t "s_1_1_sequence.stats Nucleotide Distribution"
boxplot:
fastx_quality_boxplot_graph.sh -i s_1_1_sequence.stats -o s_1_1_sequence.stats.quality.png -t "s_1_1_sequence.stats Quality Scores"

The above commands are run on tak. If you’re running the commands on your own computer, make sure the programs/packages are installed.